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Preface

The field of artificial neural networks has made tremendous progress in the past 20 years in terms
of theory, algorithms, and applications. Notably, the majority of real world neural network appli-
cations have involved the solution of difficult statistical signal processing problems. Compared to
conventional signal processing algorithms that are mainly based on linear models, artificial neural
networks offer an attractive alternative by providing nonlinear parametric models with universal
approximation power, as well as adaptive training algorithms. The availability of such powerful
modeling tools motivated numerous research efforts to explore new signal processing applications
of artificial neural networks. During the course of the research, many neural network paradigms were
proposed. Some of them are merely reincarnations of existing algorithms formulated in a neural
network-like setting, while the others provide new perspectives toward solving nonlinear adaptive
signal processing. More importantly, there are a number of emergent neural network paradigms that
have found successful real world applications.

The purpose of this handbook is to survey recent progress in artificial neural network theory,
algorithms (paradigms) with a special emphasis on signal processing applications. We invited a
panel of internationally well known researchers who have worked on both theory and applications of
neural networks for signal processing to write each chapter. There are a total of 12 chapters plus one
introductory chapter in this handbook. The chapters are categorized into three groups. The first group
contains in-depth surveys of recent progress in neural network computing paradigms. It contains five
chapters, including the introduction, that deal with multilayer perceptrons, radial basis functions,
kernel-based learning, and committee machines. The second part of this handbook surveys the neural
network implementations of important signal processing problems. This part contains four chapters,
dealing with a dynamic neural network for optimal signal processing, blind signal separation and
blind deconvolution, a neural network for principal component analysis, and applications of neural
networks to time series predictions. The third part of this handbook examines signal processing
applications and systems that use neural network methods. This part contains chapters dealing
with applications of artificial neural networks (ANNs) to speech processing, learning and adaptive
characterization of visual content in image retrieval systems, applications of neural networks to
biomedical image processing, and a hierarchical fuzzy neural network for pattern classification.

The theory and design of artificial neural networks have advanced significantly during the past
20 years. Much of that progress has a direct bearing on signal processing. In particular, the nonlinear
nature of neural networks, the ability of neural networks to learn from their environments in super-
vised and/or unsupervised ways, as well as the universal approximation property of neural networks
make them highly suited for solving difficult signal processing problems. o

From a signal processing perspective, it is imperative to develop a proper understanding of basic
neural network structures and how they impact signal processing algorithms and applications. A
challenge in surveying the field of neural network paradigms is to distinguish those neural network
structures that have been successfully applied to solve real world problems from those that are still
under development or have difficulty scaling up to solve realistic problems. When dealing with
signal processing applications, it is critical to understand the nature of the problem formulation so
that the most appropriate neural network paradigm can be applied. In addition, it is also important
to assess the impact of neural networks on the performance, robustness, and cost-effectiveness of
signal processing systems and develop methodologies for integrating neural networks with other
signal processing algorithms.
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1.1 Introduction

The theory and design of artificial neural networks have advanced significantly during the past.
20 years. Much of that progress has a direct bearing on signal processing. In particular, the non-
linear nature of neural networks, the ability of neural networks to learn from their environments in
supervised as well as unsupervised ways, as well as the universal approximation property of neural
networks make them highly suited for solving difficult signal processing problems.

From a signal processing perspective, it is imperative to develop a proper understanding of basic
neural network structures and how they impact signal processing algorithms and applications. A
challenge in surveying the field of neural network paradigms is to identify those neural network
structures that have been successfully applied to solve real world problems from those that are still
under development or have difficulty scaling up to solve realistic problems. When dealing with
signal processing applications, it is critical to understand the nature of the problem formulation so
that the most appropriate neural network paradigm can be applied. In addition, it is also important
to assess the impact of neural networks on the performance, robustness, and cost-effectiveness of
signal processing systems and develop methodologies for integrating neural networks with other
signal processing algorithms. Another important issue is how to evaluate neural network paradigms,
learning algorithms, and neural network structures and identify those that do and do not work reliably
for solving signal processing problems.

This chapter provides an overview of the topic of this handbook — neural networks for signal
processing. The chapter first discusses the definition of a neural network for signal processing
and why it is important. It then surveys several modern neural network models that have found
successful signal processing applications. Examples are cited relating to how to apply these nonlinear

0-8493-2359-2/01/$0.00+$1.50
®© 2001 by CRC Press, LLC 1-1



1-2 1. INTRODUCTION TO NEURAL NETWORKS FOR SIGNAL PROCESSING

computation paradigms to solve signal processing problems. Finally, this chapter highlights the
remaining contents of this book.

1.2 Artificial Neural Network (ANN) Models — An Overview

1.2.1 Basic Neural Network Components

A neural network is a general mathematical computing paradigm that models the operations of bio-
logical neural systems. In 1943, McCulloch, a neurobiologist, and Pitts, a statistician, published a
seminal paper titled “A logical calculus of ideas imminent in nervous activity” in Bulletin of Mathe-
matical Biophysics [1]. This paper inspired the development of the modern digital computer, or the
electronic brain, as John von Neumann called it. At approximately the same time, Frank Rosenblatt
was also motivated by this paper to investigate the computation of the eye, which eventually led to
the first generation of neural networks, known as the perceptron [2]. This section provides a brief
overview of ANN models. Many of these topics will be treated in greater detail in later chapters. The
purpose of this chapter, therefore, is to highlight the basic concept of these neural network models
tu prepare the readers for later chapters.

1.2.1.1 McCulloch and Pitts’ Neuron Model

Among numerous neural network models that have been proposed over the years, all share a
common building block known as a neuron and a networked interconnection structure. The most
widely used neuron model is based on McCulloch and Pitts’ work and is illustrated in Figure 1.1.

A IR R A )

L I I L)
L L T T T T N N

1.1 McCulloch and Pitts’ neuron model.

In Figure 1.1, each neuron consists of two parts: the net function and the activation function. The
net function determines how the network inputs {v;: 1 < j < N} are combined inside the neuron.
In this figure, a weighted linear combination is adopted:

N
u=2wjyj+9 (1.1)

{w;; 1 < j < N} are parameters known as synaptic weights. The quantity € is called the bias
(or threshold) and is used to model the threshold. In the literature. other types of network input
combination methods have been proposed as well. They are summarized in Table 1.1.
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TABLE 1.1 Summary of Net Functions

Net Functions Formula Comments

N

Linecar = Z wivi +4 Most commonly used
J=1

NN
Higher order (2nd order formula u= Z Z wikvive +0  w;isa weighted linear combination of higher order polynomial
exhibited) j=lk=1 terms of input variable. The number of input terms equals

N4 where d is the order of the polynomial

N

Delta (3~ - 1) "= n wjyj Seldom used

The output of the neuron, denoted by a; in this figure, is related to the network input u; via a linear
or nonlinear transformation called the activation function:

a= f(u). (1.2)

In various neural network models, different activation functions have been proposed. The most
commonly used activation functions are summarized in Table 1.2.

TABLE 1.2  Neuron Activation Functions

Activation Function Formulaa = f(u) Derivatives yﬂ(uﬂ Comments

Sigmoid flu) = W——Iu/f f@)(l = f))/T Commonly used; derivaFivc can be
computed from f(u) directly.

Hyperbolic tangent S (u) tanh ( ’7‘-) (l - [f(“)12> T T = temperature parameter

Inverse tangent flu) = % an~! (§) ;ZT . :(—ul/T)f Less frequently used

Threshold flu) = : t 20, Derivatives do not exist at

-1 u<O.
u=0

Gaussianradial basis ~ f(u) = exp [—]lu - rnllz/az] =2 —m)- f(u)/a> Used for radial basis neural network; m
and o= are parameters to be specified

Linear flu)y=au+b a

Table 1.2 lists both the activation functions as well as their derivatives (provided they exist). In
both sigmoid and hyperbolic tangent activation functions, derivatives can be computed directly from
the knowledge of f(u).

1.2.1.2 Neural Network Topology

In a neural network, multiple neurons are interconnected to form a network to facilitate dis-
tributed computing. The configuration of the interconnections can be described efficiently with a
directed graph. A directed graph consists of nodes (in the case of a neural network, neurons, as well
as external inputs) and directed arcs (in the case of a neural network, synaptic links).

The topology of the graph can be categorized as either acyclic or cyclic. Refer to Figure 1.2a; a
neural network with acyclic topology consists of no feedback loops. Such an acyclic neural network
is often used to approximate a nonlinear mapping between its inputs and outputs. As shown in
Figure 1.2b, a neural network with cyclic topology contains at least one cycle formed by directed
arcs. Such a neural network is also known as a recurrent network. Due to the feedback loop,
a recurrent network leads to a nonlinear dynamic system model that contains internal memory.
Recurrent neural networks often exhibit complex behaviors and remain an active research topic in
the field of artificial neural networks.
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L7

(a) Acyclic topology (b) Cyclic topology

1.2 Illustration of (a) an acyclic graph and (b) a cyclic graph. The cycle in (b) is emphasized with thick lines.

1.2.2 Multilayer Perceptron (MLP) Model

The multilayer perceptron [3] is by far the most well known and most popular neural network among
all the existing neural network paradigms. To introduce the MLP, let us first discuss the perceptron
model.

1.2.2.1 Perceptron Model

An MLP is a variant of the original perceptron model proposed by Rosenblatt in the 1950s [2].
In the perceptron model, a single neuron with a linear weighted net function and a threshold activation
function is employed. The input to this neuron x = (xj, x2,..., xp) 1s a feature vector in an

n-dimensional feature space. The net function u(x) is the weighted sum of the inputs:

u(x) = wo + Y wixi (13)

i=]
and the output y(x) is obtained from u(x) via a threshold activation function:

1 ux)=>0

tad
Ra

X2

~REN N~
R T I~ I T >
- T I

1.3 A perceptron neural network model.

The perceptron neuron model can be used for detection and classification. For example, the weight
vector w = (wj, wy, ..., Wy,) may represent the templité of a certain target. If the input feature
vector x closely matches w such that their inner product exceeds a threshold —wy, then the output
will become +1, indicating the detection of a target.

The weight vector w needs to be determined in order to apply the perceptron model. Often, a set
of training samples {(x (i), d(i)): i € I,} and testing samples {(x (i), d(i)); i € I,} are given. Here,
d(i)(€ {0, 1}) is the desired output value of y(x(i)) if the weight vector w is chosen correctly, and
I, and I are disjoined index sets. A sequential online perceptron learning algorithm can be applied
to iteratively estimate the correct value of w by presenting the training samples to the perceptron
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neuron in a random, sequential order. The learning algorithm has the following formulation:
wk + 1) = wk) + n(dk) = y(k))x(k) (L.5)

where y(k) is computed using Equations (1.3) and (1.4). In Equation (1.5), the learning rate
n(0 < n < 1/]x(k)|Imax) is @ parameter chosen by the user, where |x(k)|max is the maximum
magnitude of the training samples {x(k)}. The index k is used to indicate that the training samples
are applied sequentially to the perceptron in a random order. Each time a training sample is applied,
the corresponding output of the perceptron y(k) is to be compared with the desired output d (k).
If they are the same, meaning the weight vector w is correct for this training sample, the weights
will remain unchanged. On the other hand, if y(k) # d(k), then w will be updated with a small
step along the direction of the input vector x(k). It has been proven that if the training samples
are linearly separable, the perceptron learning algorithm will converge to a feasible solution of the
weight vector within a finite number of iterations. On the other hand, if the training samples are not
linearly separable, the algorithm will not converge with a fixed, nonzero value of 7.

MATLAB Demonstration Using MATLAB m-files perceptron.m, datasepf.m, and
sline.m, we conducted a simulation of a perceptron neuron model to distinguish two separa-
ble data samples in a two-dimensional unit square. Sample results are shown in Figure 1.4.

Initial hyperplane Final hyperplane location
1 T 1 3
0.8 % 0.8 b %
\ ) : O \ '
W © . | o .
08t N « 08 Y, )

;\\“ . * & o o I"\, *
0.4 @, 0.4 oY

« L «
0.2 - "'\_\H 0.2 o |
. \\
0 ™~ 0
0 02 04 06 08 1 0 02 04 06 08 1

1.4 Perceptron simulation results. The figure on the left-hand side depicts the data samples and the initial position of
the separating hyperplane, whose normal vector contains the weights to the perceptron. The right-hand side illustrates
that the learning is successful as the final hyperplane separates the two classes of data samples.

1.2.2.1.1 Applications of the Perceptron Neuron Model -
There are several major difficulties in applying the perceptron neuron model to solve real world
pattern classification and signal detection problems:

1. The nonlinear transformation that extracts the appropriate feature vector x is not specified.
2. The perceptron learning algorithm will not converge for a fixed value of learning rate
- if the training feature patterns are not linearly separable.
3. Even though the feature patterns are linearly separable, it is not known how long it takes
for the algorithm to converge to a weight vector that corresponds to a hyperplane that
separates the feature patterns.
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1.2.2.2 Multilayer Perceptron

A multilayer perceptron (MLP) neural network model consists of a feed-forward, layered
network of McCulloch and Pitts’ neurons. Each neuron in an MLP has a nonlinear activation function
that is often continuously differentiable. Some of the most frequently used activation functions for
MLP include the sigmoid function and the hyperbolic tangent function.

A typical MLP configuration is depicted in Figure 1.5. Each circle represents an individual neuron.
These neurons are organized in layers, labeled as the hidden layer #1, hidden layer #2, and the output
layer in this figure. While the inputs at the bottom are also labeled as the input layer, there is usually
no neuron model implemented in that layer. The name hidden layer refers to the fact that the output
of these-neurons will be fed into upper layer neurons and, therefore, is hidden from the user who only
observes the output of neurons at the output layer. Figure 1.5 illustrates a popular configuration of
MLP where interconnections are provided only between neurons of successive layers in the network.
In practice, any acyclic interconnections between neurons are allowed.

Output Layer

Hidden Layer #1

Input Layer

1.5 A three-layer multilayer perceptron configuration.

An MLP provides a nonlinear mapping between its input and output. For example, consider the
following MLP structure (Figure 1.6) where the input samples are two-dimensional grid points, and
the output is the z-axis value. Three hidden nodes are used, and the sigmoid function has a parameter
T = 0.5. The mapping is plotted on the right side of Figure 1.6. The nonlinear nature of this mapping
is quite clear from the figure. The MATLAB m-files used in this demonstration are mlpdemol . m
and mlp2.m.

It has been proven that with a sufficient number of hidden neurons, an MLP with as few as two
hidden layer neurons is capable of approximating an arbitrarily complex mapping within a finite
support [4].

1.2.2.3 Error Back-Propagation Training of MLP

A key step in applying an MLP model is to choose the weight matrices. Assuming a layered
MLP structure, the weights feeding into each layer of neurons form a weight matrix of that layer (the
input layer does not have a weight matrix as it contains no neurons). The values of these weights
are found using the error back-propagation training method.



