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FOREWORD

The authors kindly asked me in the preliminary stages what T thought about
their writing a book of this sort. My response was enthusiastic for a number of
reasons.

First, over the past several decades engineering activities have invaded the
atmosphere to an increasing extent. This is true in space, in air transportation,
in communications, in the design of tall buildings and long bridges, in the
release of pollutants, in wind energy, and so on. The need for engineers to
know more about the atmosphere clearly has been increasing in leaps and
bounds. It is now not only useful that this understanding be developed, but
also critical.

Second, the knowledge of the atmosphere is moving so rapidly it is difficult
for engineers to climb on board and gain the insight and the ability to make
the simplifications often required for engineering purposes. This is especially
true of atmospheric turbulence, the central subject of this book. A guide to the
fundamentals by meteorologists sympathetic to engineering requirements is
therefore invaluable.

Third, the authors are themselves internationally respected for their contri-
butions to the frontline of meteorological research during the past several
highly productive decades. Their extensive involvement with engineering appli-
cations has made them aware of needs and sympathetic to engineering con-
straints.

This book should find an important role at the interface between engineer-
ing and the atmosphere. It will significantly improve the mixing and exchange
of momentum between these fields.

A. G. DAVENPORT

Professor of Civil Engineering
Director, Boundary Layer Wind Tunnel
The University of Western Ontario
London, Canada

vii



PREFACE

Atmospheric scientists have recognized the importance of turbulence since the
beginning of the century. It was clear that the energy budget of the atmosphere
required the conversion of large-scale motions into turbulence before dissipa-
tion into heat. Meteorologists also recognized the importance of turbulence in
the transfer of moisture and sensible heat near the ground, and it was obvious
that air pollutants were dispersed by turbulence.

As a result, meteorologists concentrated on turbulent transport and its effect
on the distribution of averaged atmospheric variables. Initially, there was little
interest in the statistical properties of turbulence, such as the probability
distributions and spectral densities of turbulent motions.

Now we have learned that these quantities allow us to describe and predict
certain features of turbulence. Moreover, it is precisely these statistical quanti-
ties that are needed to assess and predict the effects of the wind and turbulence
on the dynamic response of structures and aircraft. For this reason, engineers
are now interested in the statistical properties of atmospheric turbulence. They
have found that atmospheric turbulence is more complex than the wind-tunnel
turbulence more traditionally studied in engineering and fluid dynamics be-
cause of the importance of convection at the Earth’s surface and the smaller
effects of the Earth’s rotation.

Today, both meteorologists and engineers must be able to estimate statisti-
cal properties of atmospheric turbulence from relatively accessible quantities,
such as the wind speed, the vertical temperature distribution close to the
ground, and terrain features.

Rational methods for providing such estimates were created in the 1940s
and 1950s as a result of hypotheses proposed by Monin and Obukhov and by
Kolmogorov. Primarily as a result of these theories, one of us (Panofsky)
teamed up with Professor John L. Lumley to produce Structure of Atmospheric
Turbulence, published in 1964. Lumley provided the theoretical background
and Panofsky analyzed the statistical results then available in accordance with
the theoretical framework. By 1964, there had been one major observational
program over simple terrain (at O’Neill, Nebraska) and many separate studies
over more complex terrain and on towers.
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Since 1964 several independent developments have occurred, particularly in
regard to observations. Several major measurement programs have taken place
over uniform terrain, some extending to much greater heights than the O’Neill
observations. Systematic investigations of flow and turbulence over differing
types of complex terrain have been concluded. As a result, much of the
statistical material described by Lumley and Panofsky is now out-of-date, and
the book is no longer in print. The theoretical material, on the other hand, has
not changed significantly since 1964.

Today, there is no single place where engineers can find the most accurate
models for atmospheric spectra and variances. Consequently, the purpose of
this volume goes beyond bringing the material of the earlier book up-to-date.
In the first place, it is directed at both practicing engineers and meteorologists.
The first three chapters provide a reasonably rigorous treatment of the basic
physics and statistics underlying the properties of atmospheric turbulence.
Chapters 4-11 are self-sufficient, and give, after a very brief summary of the
basic meteorological equations, an up-to-date treatment of statistical properties
of atmospheric turbulence, with emphasis on the behavior close to the ground.
Some of the recent developments of theory and observations in the higher
turbulent layers are included, as well as a chapter concerning theory and
practice of estimation of pollution concentration. This section is also useful as
a text on atmospheric turbulence and diffusion for meteorologists and other
physical scientists. Finally, the last three chapters are addressed specifically to
engineers and deal with calculating response of systems to turbulent forcing.

Thus the book has two distinct purposes: (1) to serve as an summary of the
current knowledge of the statistical characteristics of atmospheric turbulence
and (2) to serve as a introduction to methods required to apply these statistics
to practical-engineering problems. To aid the engineer or meteorologist, an
appendix summarizes estimation techniques.

Our efforts have been preceded by the work of hundreds of scientists and
engineers; we have referred to those articles and books that we have used in
preparing this book and have not attempted to provide a thorough review or
bibliography. In many cases, we use classical or well-known material without
reference.

We acknowledge support for parts of this work from the National Science
Foundation; the Department of Energy; Riseg National Laboratory, Denmark;
Meteorology Research, Inc.; and of course, from Penn State. Our friend, Leif
Kristensen of Risg helped us to improve the manuscript and A. M. Yaglom,
Soviet Academy of Sciences, provided comments. The list of friends and
colleagues who have helped us try to understand turbulence is much too long
to reproduce—they have our gratitude, nonetheless. Any errors are our very
own.

HANS A. PANOFSKY

JonN A. DurTON
University Park, Pennsylvania
October 1983
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