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Preface

Oscillatory and wave phenomena are encountered in almost all branches of
physics: mechanics, geophysics, electromagnetism, optics, quantum physics, etc.
Some of them were first observed in antiquity, but their scientific study only
started in the 17" Century. The phenomena include mechanical vibrations and
waves, electromagnetic vibrations and waves, matter waves, etc. Electromagnetic
vibrations and waves were discovered in the 19" Century, while matter waves
were discovered in the 20" Century. Each branch of physics has its own concepts,
and even its own proper mathematical language. Nevertheless, all types of
vibrations and waves share several common properties: modes, similar forms of
energy, superposition, interference, diffraction, etc.

The purpose of this book is to study oscillatory and wave phenomena at the
undergraduate level. It was not conceived with the intended application as a
textbook for a specific physics course. Some sections, indicated by an asterisk (*),
may prove difficult and may be omitted without loss of continuity.

Chapter 1 introduces the basic concepts and studies some examples of
vibrations of mechanical and electromagnetic systems with one or several degrees
of freedom. Chapter 2 studies the superposition of vibrations and introduces
Fourier analysis. Chapter 3 analyzes forced vibrations and resonances. Chapter 4
introduces the basic notions of waves in infinite media: wave equations and their
solutions, energy density and energy transfer, etc. Chapter 5 is devoted to the study
of mechanical waves (elastic waves, sound and surface waves). In Chapter 6, we
summarize the basic laws of electromagnetism and analyze the electromagnetic
waves in insulators, conductors and plasmas. Reflection and refraction are studied
in Chapter 7, interference and diffraction are studied in Chapter 8 and finally
standing waves and waveguides, in Chapter 9. This book shall not study the
emission of waves or optical setups.
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The required mathematical techniques are introduced as the need arises.
Appendix A aids understanding by summarizing the principal mathematical
formulas, integrals and vector analysis. We tried to use clear notations by
assigning similar symbols for the various physical quantities: a boldfaced symbol
for a vector quantity, an italic symbol for a scalar quantity or a component of a
vector quantity, an underlined symbol for a complex quantity, and script symbol
for a curve, a surface, a volume and some special quantities. Physical quantities of
the same type are referred to by symbols with different indexes: for instance,
S @0 S e Feey, etc., for the different types of force. The energy is designated by U
to avoid confusion with the components of the electric field E. The frequency is
represented by V , instead of the usual Greek symbol v, to avoid its confusion with
the velocity v.

A unit vector is often represented by e, while the unit vectors of the axes are
represented by ey, e, and e,. In order to write summations in a condensed form, we
sometimes designate the Cartesian coordinates x, y and z by x;, x, and x3
respectively, and the components of a vector V by Vy =V, Vo = Vyand V3 = V,.
The partial derivative of u(x, y, z, f) with respect to time is represented by # or du
and its partial derivatives by d,u for du/ox, 9’ u for 0*u/dx ot, etc. We also use the
notation d;u for the partial derivatives ou/0x; and 0;¥; for 0¥;/ox; (i and j = 1, 2, 3).

Each chapter ends with a Summary section for the principal results of the
chapter, and a section entitled Problem solving suggestions, which contains
remarks or possible errors to be avoided, approximation methods and further
clarifications. For training students, each chapter contains some examples that are
worked out in detail and two kinds of exercises: conceptional questions, a
selection of discussion questions designed to develop the understanding of the
physical concepts, often without a need for calculations; and problems, which are
ordered according to the sections of the chapter and arranged in approximate levels
of difficulty (an asterisk (*) indicates a problem of some difficulty, two asterisks
(**) indicates a problem with some connectional or computational difficulties. The
answers to most of the problems are given in a special addendum entitled Answers
to the Problems, which enables students to check their results.

I hope that this text makes the subject more accessible for students, and that it
is utilized as a good teaching aid for professors.

T. BECHERRAWY
November 2011
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Chapter 1

Free Oscillations

In this chapter we introduce the basic notions of free oscillations. Starting with a
study of the differential equation governing the undamped vibrations, its general
solution and its trigonometric, complex and phasor representations, we then progress
to the equation of damped oscillations and its solutions. We analyze some simple
oscillating systems with one degree of freedom by emphasizing the notion of energy
which, in modern physics, is considered to be a more fundamental quantity than
forces. We generalize these results to systems undergoing small displacements or
variations of the state “back-and-forth” near an equilibrium position. Afterwards, we
analyze systems with two or several degrees of freedom.

1.1. Oscillations and waves, period and frequency

Vibrations or oscillations are motions or changes in the state of physical systems
back-and-forth on both sides of an equilibrium position that are repeated more or
less regularly in time. Waves are vibrations that propagate from one region to
another. We encounter vibratory and wave phenomena in almost all branches of
physics: mechanics, geophysics, electromagnetism, optics, quantum physics, etc. We
consider in this book two kinds of vibrations: mechanical vibrations (of a
pendulum, a string, etc.) and electromagnetic vibrations (of electric circuits, radio
waves, etc.).

Vibrations are fiee if, after an initial excitation, the system oscillates subject to
its own internal forces but no-external forces. On the other hand, the vibrations are
said to be forced if the external force continues to sustain the oscillation of the
system. The external force is called the driving force.
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Vibrations of a system are periodic if the system returns exactly to the same state
after each time interval 7, called the period of vibration. Any physical quantity » of
the system takes the same value after time intervals 7, 27, 37, etc. Figure 1.1a shows
the variation of a periodic function # in time. This periodicity may be expressed
mathematically by the relation

u@)=u@+D=u+27)=..=u(t+n)... [1:1)
The frequency V is the number of complete vibrations in unit time, thus

V=1T. (2]
In the International System of Units (SI), the period is expressed in seconds (s) and

the frequency in s™', called hertz (Hz). For high frequencies, we use kilohertz
(kHz = 10° Hz), megahertz (MHz = 10° Hz) and gigahertz (GHz = 10° Hz).

t

(a) (b)

Figure 1.1. a) Periodic vibration; b) simple harmonic vibration u = A cos(wt + ¢)

1.2. Simple harmonic vibrations: differential equation and linearity

Periodic vibrations are referred to as harmonic vibrations by analogy to musical
sounds. The simplest periodic vibration is represented by a sine or a cosine function
known as a simple harmonic function

u = A cos(wt + ). [1.3]

A is the amplitude and o is the angular frequency (often called frequency for short).
(wr+ @) is the phase at time ¢ and ¢ is the initial phase (called phase, for short). The
phase has the dimension of angles, and is therefore expressed in radians (rad); while
the angular frequency o is in radians per second (rad/s). A and u have the same
dimensions, so they are expressed in the same units. The simple harmonic function
[1.3] is illustrated in Figure 1.1b.
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The values of the sinusoidal function are repeated if the phase varies by 27 (or
2nm with »n as an integer). Thus, « has a period T such that o(t + 7) + ¢ =
wt + ¢ + 27; hence, the relationships between , T'and V :

0=2n/T=2nV [1.4]
By differentiating expression [1.3] twice with respect to time, we obtain:

u = duldt =—-Ao sin(wr + 0) = Aw cos(wr + ¢ + 7/2) =1
i =duldf = -A0’ cos(wr + ¢) = Aw* cos(ot + ¢ + ). [1.6]

Therefore, u is a solution of the differential equation of simple harmonic oscillations
i +0'u=0. [1.7]

This is a second-order homogeneous differential equation. w is the natural angular
frequency (also called the normal angular frequency). It depends on the physical
characteristics of the oscillating system (masses, internal forces, etc.). Expression
[1.3] is the general solution or the normal mode of oscillation. Any oscillation of the
free system may be written in this form and any expression of this form is a possible
state of oscillation. The constants of integration A and ¢ depend on the initial
excitation of the system, that is, the initial conditions which are the values of # and #
at a given time #,. For instance, if the system is set in oscillation at 7, = 0, we have
the conditions #(0) = 4 cos ¢ and %#(0) = — Aw sin ¢, from which we deduce that

A= \Ju(0)* +4(0)* /w? [1.8]
cos ¢ = u(0)/4, sin ¢ = —u(0)/wA4. [1.9]

The relationships in [1.9] determine the phase ¢. We may also write
tan ¢ = —u(0)/wu(0). [1.10]

However, this relationship determines ¢ only up to «. Instead of [1.3], we may use
the expression u = 4 sin(w? + ¢). By adding or subtracting 7/2 or 7 from the phase,
it is possible to write any simple harmonic vibration in the form of [1.3] with a
positive amplitude 4.

The equation of oscillations [1.7] is l/inear and homogeneous. Therefore, it has
the important property of satisfying the superposition principle: If u(?) is a solution
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and C is an arbitrary constant, Cu(%) is also a solution. Likewise, if () and u,(¢) are
two solutions, any linear superposition with arbitrary coefficients C; and C,

u(®) = Cy (1) + G ux(?) [1.11]

is also a solution of the equation. The initial conditions of u(#) are linear
combinations of the initial conditions of u;(7) and u,(¢) with the same coefficients C;
and C,. The superposition principle plays a crucial role in many branches of physics.

Equation [1.7] may be written in the form D.u = 0, where D = dldf + o or
a more complicated form. D is called an operator. It transforms a function u
to another function D.u. If D verifies the condition D.(Ciuy + Cup) =
Cy D.u; + Cy D.uy, it is said to be linear. If u; and u, are two solutions of the
linear and homogeneous differential equation, D.u = 0, any linear superposition
u = Cyuy + Chu, is also a solution, for any values of the constants C; and C,. If u; and
u, are two independent solutions of the second-order differential equation Du = 0, u
is the general solution of this equation, because it depends on two arbitrary and
independent constants C; and C,. A differential equation D.u = f'is not homogeneous
because it contains a term f'that is independent of u.

The general solution of differential equation [1.7] may be written in one of the
following equivalent forms

u(t) = A cos(wt + ¢) [1.12]
= A’ sin (07 + ¢') [1.13]
= A, cos(wi) + A, sin(w?). [1.14]

Each of these expressions depends on two independent parameters that are
determined by the initial conditions. The relationships between these parameters are:

A =Aand ¢ =0+ m/2 [1.15]
A=A cos O=Asin ¢, Ay=—Asin 0 =A cos ¢'. [1.16]

Note that, in form [1.14], 4; and 4, may be positive, negative or zero. If the
amplitudes 4 and A are chosen to be positive, we have the following relationships:

A=y4? + 4,2, tan & =— Ay/A, , tan & = A/As. [1.17]

EXAMPLE 1.1. Write the expression # = 3 cos(wf) + 2 cos(wf — 7/3) in the form
u = A cos(wt + ¢).

SOLUTION — Using the addition formula for cos(wz — 1t/3), we find
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u =3 cos(wf) + 2 cos% cos(mr) +2 sin% sin(of) = 4 cos(or) + 1.732 sin(w?).

We may write u in the form 4 cos(wf + ¢ ) = 4 cos ¢ cos(wf) — A4 sin ¢ sin(wz) if
A cos ¢ =4 and 4 sin ¢ =—1.732. By squaring both sides of these equations and adding
them, we find 4> =47+ 1.732%. Hence A4 =4.359, cos »=0.9177 and sin ¢ =— 0.3974.
Thus we deduce that ¢ = — 0.4086 rad and x = 4.359 cos(w? — 0.4086).

1.3. Complex representation and phasor representation

A complex variable (designated by an underlined symbol) may be written in the
algebraic form

z=xt1iy, with x=2z and y=9%z, [1.18]
where i* = ~1. The real part of z is x and its imaginary part is y. A complex
number z is usually represented by a point of coordinates x and y in the Oxy plane

called an Argand diagram (Figure 1.2a). We may also use the exponential form in
terms of the polar coordinates

z=pcoso+ipsing=pe®, wherep=|z|=modutucz and ¢ = phasez. [1.19]

p = | z| is the modulus of z and ¢ is the phase of z, where we have used Euler
equation (see section A.5 of Appendix A)

€= cos ¢ + i sin ¢. [1.20]

The two representation are related by the equations

x=pcosdh, y=psind; p=,[x2+y2, cos 0 =x/p, sind=y/p.

[1.21]
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Figure 1.2. a) Argand diagram; b) sum of two complex numbers z; and z,
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The sum of two complex numbers is easily evaluated using the algebraic form
(Figure 1.2b)

21+t 2= +iy) + (2 + iy2) = (0 + x2) +i( +32), [1.22]

while their product and ratio are easily evaluated using the exponential form:

z2122=(P1€® ) (p2€%2) = p; py 14 [1.23]
zi/z = (P1 € )(p2'®2 ) = (p1/py) €079, [1.24]

It is easy to verify that differential equation [1.7] has the general complex
solution

u(®)=Ceé™ with C=Ce®, [1.25]
where C is the complex amplitude and C = |C | is its modulus. This expression

depends on two real parameters C and o, as it should for any general solution of a
second order differential equation. By taking the real part, we find

u(f) = e u(f) = 2 [C@ * ] = C cos(wr + ). [1.26]
Comparing this with the expression # = A4 cos(wf + ¢), we deduce that
A=|C|= modutus C, 0= 0= phase C. [1.27]

Thus, the amplitude and the phase of the real solution u are respectively the modulus
and the phase of the complex amplitude C of the complex solution.

y ’ y a0
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] J K wy wi+e | \d/o
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~ P u(t) ¥
T \ Tdtu(r)

dtu u(r)
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Figure 1.3. Two similar representations of a simple harmonic function, its derivatives
and its primitive: a) complex exponential representation and b) phasor representation



