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General Preface

All economists of a certain age remember the “little green books”. Many own a few.
These are the offspring of The New Palgrave: A Dictionary of Economics; collections of
reprints from The New Palgrave that were meant to deliver at least a sense of the
Dictionary into the hands of those for whom access to the entire four volume, four
million word set was inconvenient or difficult. The New Palgrave Dictionary of
Economics, Second Edition largely resolves the accessibility problem through its online
presence. But while the online search facility provides convenient access to specific
topics in the now eight volume, six million word Dictionary of Economics, no interface
has yet been devised that makes browsing from a large online source a pleasurable
activity for a rainy afternoon. To our delight, The New Palgrave’s publisher shares our
view of the joys of dictionary-surfing, and we are thus pleased to present a new series,
the “little blue books”, to make some part of the Dictionary accessible in the hand or
lap for teachers, students, and those who want to browse. While the volumes in this
series contain only articles that appeared in the 2008 print edition, readers can, of
course, refer to the online Dictionary and its expanding list of entries.

The selections in these volumes were chosen with several desiderata in mind: to
touch on important problems, to emphasize material that may be of more general
interest to economics beginners and yet still touch on the analytical core of modern
economics, and to balance important theoretical concerns with key empirical debates.
The 1987 Eatwell, Milgate and Newman The New Palgrave: A Dictionary of Economics
was chiefly concerned with economic theory, both the history of its evolution and its
contemporary state. The second edition has taken a different approach. While much
progress has been made across the board in the 21 years between the first and second
editions, it is particularly the flowering of empirical economics which distinguishes
the present interval from the 61 year interval between Henry Higgs’ Palgrave’s
Dictionary of Political Economy and The New Palgrave. It is fair to say that, in the long
run, doctrine evolves more slowly than the database of facts, and so some of the
selections in these volumes will age more quickly than others. This problem will be
solved in the online Dictionary through an ongoing process of revisions and updates.
While no such solution is available for these volumes, we have tried to choose topics
which will give these books utility for some time to come.

Steven N. Durlauf
Lawrence E. Blume



Introduction

The 1987 edition of The New Palgrave came at a time of some of the most
extraordinary post-war developments in microeconometrics, namely work by James
Heckman on self-selection and Daniel McFadden on discrete choice. Heckman’s entry
from the 1987 edition is preserved as a classic in this volume and is joined by an entry
on the Roy model which reflects Heckman’s subsequent thinking. Coverage of discrete
choice has been completely replaced with entries that are included here.

The successes of microeconometrics as of 1987 by no means imply that area has
been one of comparative stasis. Much of Heckman’s research, for example, has focused
on exploring how one can develop inferences which avoid theoretically unmotivated
assumptions, just as McFadden’s research has focused on exploring how economic
theory can be translated into econometric specifications of behaviour. These
overarching ways of asking questions continue to generate important advances. One
broad area of this type is semiparametric estimation, in which functional forms
assumptions are relaxed in statistical analysis. An equally important area of this type
is partial identification, which may be thought of as asking what may be learned
from data under the most minimal assumptions. Further, new approaches to data
acquisition such as survey analysis or the quest for finding interesting natural
experiments, complement the methodological advances.

While microeconometrics is widely admired for the sustained pace of advances,
there continue to be deep methodological disputes within the field. These are very
much manifested in the literature on treatment effects, which now receives very
extensive coverage. These disagreements reflect the different beliefs about the role of
economic theory in empirical work, both in terms of how empirical exercises should
be structured and in terms of the meaning of “statistical” assumptions. We believe
this collection communicates the excitement of continuing research on micro-
econometrics.

Steven N. Durlauf
Lawrence E. Blume
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categorical data

Categorical outcome models are regression models for a dependent variable that is a
discrete variable recording in which of two or more categories, usually mutually
exclusive, an outcome of interest lies.

Categorical outcome models are also called discrete outcome models or qualitative
response models, and are examples of a limited dependent variable model. Different
models specify different functional forms for the probabilities of each category. These
models are binomial or multinomial models, usually estimated by maximum
likelihood.

Key early econometrics references include McFadden (1974), Amemiya (1981),
Manski and McFadden (1981) and Maddala (1983). For textbook treatments see
Amemiya (1985), Wooldridge (2002), Greene (2003) and Cameron and Trivedi
(2005). The recent econometrics literature has focused on semiparametric estimation
(see Pagan and Ullah, 1999) and on simulation-based estimation of multinomial
models (see Train, 2003).

Binary outcomes: logit and probit models

Binary outcomes provide the simplest case of categorical data, with just two possible
outcomes. An example is whether or not an individual is employed and whether or
not a consumer makes a purchase.

For binary outcomes the dependent variable y takes one of two values, for
simplicity coded as 0 or 1. If y; = 1 with probability p;, then necessarily y, = 0 with
probability 1 — p, where i denotes the i of N observations. Regressors x; are
introduced by parameterizing the probability p;, with

p; = Prly, = 1]xi] = F(xif),

where F(-) is a specified function and a single-index form is assumed.

The obvious choice of F(:) is a cumulative distribution function (CDF) since
this ensures that 0<p,<1. The two standard models are the logit model with
pi = A(XB) = e5F /(1 + e5F), where A(z) = ¢/(1 + &) is the logistic CDF, and the
probit model with p; = ®(x!f), where ®(-) is the standard normal CDF.

Interest usually lies in the marginal effect of a change in regressor on the probability
that y = 1. For the " regressor, p;/dx;; = F'(x\)f3, where F’ denotes the derivative
of F. The sign of f3, gives the sign of the marginal effect, if F is a continuous CDF since
then F'>0, though the magnitude depends on the point of evaluation x;, Common
methods are to report the average marginal effect over all observations or to report the
marginal effect evaluated at x.

Parameter estimates are usually obtained by maximum likelihood (ML) estimation.
Given p;, the density can be conveniently expressed as f(y;) = p/'(1 — p;)' 7. On the
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assumption of independence over i, the resulting log-likelihood function is

N -
InL(B) =Y {yiIn F(xif) + (1 = y,)In(1 — F(xif))}.

It can be shown that consistency of the ML estimator requires only that p, = F(x!f}),
that is, that the functional form for the conditional probability is correctly specified.

There is usually little difference between the predicted probabilities obtained by
probit or logit, except for very low and high probability events. For the logit model
In[p;/(1 — p;)] = x.f, so that f8, gives the marginal effect of a change in x;, on the log-
odds ratio, a popular interpretation in the biostatistics literature.

A simpler method for binary data is OLS regression of y; on x;, with White
heteroskedastic robust standard errors used to control for the intrinsic hetero-
skedasticity in binary data. A serious defect is that OLS permits predicted probabilities
to lie outside the (0, 1) interval. But it can be useful for exploratory analysis, as OLS
coefficients can be directly interpreted as marginal effects and standard methods then
exist for complications such as endogenous regressors.

When one of the outcomes is uncommon, surveys may over-sample that outcome.
For example, a survey of transit use may be taken at bus stops to over-sample bus
riders. This is a leading example of choice-based sampling. Standard ML estimators
are inconsistent and instead one must use alternative estimators such as appropriately
weighted ML.

The preceding discussion presumes knowledge of F. A considerable number of
semiparametric estimators that provide consistent estimates of f§ given unknown F
have been proposed. Manski’s (1975) smooth maximum score estimator was a very
early example of semiparametric estimation.

Index models

Define a latent (or unobserved) variable y* that measures the propensity for the event
of interest to occur. If y¥ crosses a threshold, normalized to be zero, then the event
occurs and we observe y; = 1 if y¥>0 and y; = 0 if y* < 0. If y* = x| + u;, then

p; = Pr[y¥>0] = Pr[—u; <x!f] = F(x!B),

where F(-) is the CDF of —u;.

The logit model arises if u; has the logistic distribution. The probit model arises if u;
has the more obvious standard normal distribution, where imposing a unit error
variance ensures model identification. The probit model ties in nicely with the Tobit
model, where more data are available and we actually observe y;, = y* when y*>0.
And it extends naturally to ordered multinomial data.

Random utility models
In many economics applications the binary outcome is determined by individual
choice, such as whether or not to work. Then the outcome should be the alternative
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with highest utility. The additive random utility model (ARUM) specifies the utility
for individual 7 of alternative j to be Uj; = xﬁjﬁj + &jj, j = 0,1, where the error term
captures factors known by the decision-maker but not the econometrician. Then

p; = Pr[Uiy > Uy] = Pr{(eio — 1) < X, 1 — Xy Bo] = F(x1 81 — Xio o)

where F is the CDF of (g — ¢;). For components x;, of x; that vary across alternatives
(so xjor #xj1,) it is common to restrict 8, = f,, = f,. For components x;. of x;
that are invariant across alternatives (so xjo, = x;;,) only the difference f3,, — f,, is
identified.

The probit model arises, after rescaling, if €;y and ¢;, are i.i.d. standard normal. The
logit model arises if ¢;, and ¢;; are i.i.d. type 1 extreme value distributed with density
f(e) = e®exp(—e~¢). The latter less familiar distribution provides more tractable
results when extended to multinomial models.

Multinomial outcomes

Multinomial outcomes occur when there are more than two categorical outcomes.
With m outcomes the dependent variable y takes one of m mutually exclusive values,
for simplicity coded as I,...,m. Let p; denote the probability that the i™ outcome
occurs. The multinomial density for y can be written as f(y) = H}ilp;’ where y;,
j=1,...,m, are m indicator variables equal to 1 if y =j and equal to 0 if y#j.
Introducing a further subscript for the i individual and assuming independence over
i yields log-likelihood

m

N
InL(B)=3_ > yyinpy

i=l j=1

where the probabilities p; are modelled to depend on regressors and unknown
parameters f.

There are many different multinomial models, corresponding to different
parameterizations of p;;.

Unordered multinomial models
Usually the outcomes are unordered, such as in choice of transit mode to work. The
benchmark model for unordered outcomes is the multinomial logit model. When
regressors vary across alternatives (such as prices), the conditional logit (CL) model
specifies p; = ¢St / Z,:"zlex;f/}. If regressors are invariant across alternatives (such as
gender), the multinomial logit (MNL) model specifies p; = */i/3"" e, with a
normalization such as , = 0 to ensure identification. In practice some regressors may
be a mix of invariant and varying across alternatives; such cases can be re-expressed as
either a CL or MNL model.

The CL and MNL models reduce to a series of pairwise choices that do not depend
on the other choices available. For example, the choice between use of car or red bus is
not affected by whether another alternative is a blue bus (essentially the same as the
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red bus). This restriction, called the assumption of independence of irrelevant
alternatives, has led to a number of alternative models.

These models are based on the ARUM. Suppose the j™ alternative has utility
Ug = xf:,-/? +¢&j, j=1,...,m. Then

p; = Pr[Uj > Uy for all k] = Pr(ei — &;) < (x;8 — xyB) ¥ &l.

The CL and MNL models arise if the errors ¢; are ii.d. type 1 extreme value
distributed. More general models permit correlation across alternatives j in the
errors &;.

The most tractable model with error correlation is a nested logit model. This arises
if the errors are generalized extreme value distributed. This model is simple to
estimate but suffers from the need to specify a particular nesting structure.

The richer multinomial probit model specifies the errors to be m—dimensional
multivariate normal with (m + 1) restrictions on the covariances to ensure
identification. In practice it has proved difficult to jointly estimate both f and the
covariance parameters in this model. A recent popular model is the random
parameters logit model. This begins with a multinomial logit model but permits
the parameters f§ to be normally distributed. For these two models there is no closed
form expression for the probabilities and estimation is usually by simulation methods
or Bayesian methods.

Ordered multinomial models
In some cases the outcomes can be ordered, such as health status being excellent,
good, fair or poor.

The starting point is an index model, with single latent variable, y* = x| + u;.
As y* crosses a series of increasing unknown thresholds we move up the ordering
of alternatives. For example, for y* >, health status improves from poor to fair, for
y*> 0, it improves further to good, and so on. For the ordered logit (probit) model
the error u is logistic (standard normal) distributed.

An alternative model is a sequential model. For example, one may first decide
whether or not to go to college (y = 1) and if chose college then choose either two-
year college (y = 2) or four-year college (y = 3). The two decisions may be modelled
as separate logit or probit models.

A special case of ordered categorical data is a count, such as number of visits to a
doctor taking values 0, 1, 2, .... An ordered model can be applied to these data, but it
is better to use count models. The simplest count model is Poisson regression with
exponential conditional mean E[y,|x;] = exp(x!f). Common procedures are to use the
Poisson but obtain standard errors that relax the Poisson restriction of variance-mean
equality, to estimate the richer negative binomial model, or to estimate hurdle or two-
part models or with-zeroes models that permit the process determining zero counts to
differ from that for positive counts.
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Multivariate outcomes and panel data

Multivariate discrete data arise when more than one discrete outcome is modelled.
The simplest example is bivariate binary outcome data. For example, we may seek to
explain both employment status (work or not work) and family status (children or
no children). The standard model is a bivariate probit model that specifies an index
model for each dependent variable with normal errors that are correlated. Such
models can be extended to permit simultaneity.

For panel binary data the standard model is an individual specific effects model
with p;, = F(«; + x,8) where %; is an individual specific effect. The random effects
model usually specifies #; ~ N[0, ¢2] and is estimated by numerically integrating out
o; using Gaussian quadrature. The fixed effects model treats «; as a fixed parameter. In
short panels with few time periods consistent estimation of f is possible in the fixed
effects logit but not the fixed effects probit model. If x;, includes y; ,_,, a dynamic
model, fixed effects logit is again possible but requires four periods of data.

A. COLIN CAMERON

See also logit models of individual choice; maximum score methods; semiparametric estimation;
simulation-based estimation.
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competing risks model

A competing risks model is a model for multiple durations that start at the same
point in time for a given subject, where the subject is observed until the first duration
is completed and one also observes which of the multiple durations is completed first.

The term ‘competing risks’ originates in the interpretation that a subject faces
different risks i of leaving the state it is in, each risk giving rise to its own exit
destination, which can also be denoted by i. One may then define random variables
T; describing the duration until risk i is materialized. Only the smallest of all these
durations Y := min;T; and the corresponding actual exit destination, which can
be expressed as Z := argmin, T}, are observed. The other durations are censored in the
sense that all is known is that their realizations exceed Y. Often those other durations
are latent or counterfactual, for example if T; denotes the time until death due to
cause 1.

In economics, the most common application concerns individual unemployment
durations. One may envisage two durations for each individual: one until a transition
into employment occurs, and one until a transition into non-participation occurs. We
observe only one transition, namely, the one that occurs first. Other applications
include the duration of treatments, where the exit destinations are relapse and
recovery, and the duration of marriage, where one risk is divorce and the other is
death of one of the spouses. More generally, the duration until an event of interest
may be right-censored due to the occurrence of another event, or due to the data
sampling design. The duration until the censoring is then one of the variables T;.

Sometimes one is interested only in the distribution of Y. For example, an
unemployment insurance (UI) agency may be concerned only about the expenses
on UI and not in the exit destinations of recipients. In such cases one may employ
standard statistical duration analysis for empirical inference with register data on the
duration of UI receipt. However, in studies on individual behaviour one is typically
interested in one or more of the marginal distributions of the T;. If these variables are
known to be independent, then again one may employ standard duration analysis for
each of the T; separately, treating the other variables T;(j#1) as independent right-
censoring variables. But often it is not clear whether the T; are independent. Indeed,
economic theory often predicts that they are dependent, in particular if they can be
affected by the individual’s behaviour and individuals are heterogeneous. It may even
be sensible from the individual’s point of view to use their privately observed
exogenous exit rates into destinations j as inputs for the optimal strategy affecting the
exit rate into destination i(i#j) (see, for example, van den Berg, 1990). Erroneously
assuming independence leads to incorrect inference, and in fact the issue of whether
the durations T; are related is often an important question in its own right.
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Unfortunately, the joint distribution of all T; is not identified from the joint
distribution of Y; Z, a result that goes back to Cox (1959). In particular, given any
specific joint distribution, there is a joint distribution with independent durations T;
that generates the same distribution of the observable variables Y; Z. In other words,
without additional structure, each dependent competing risks model is observation-
ally equivalent to an independent competing risks model. The marginal distributions
in the latter can be very different from the true distributions.

Of course, some properties of the joint distribution are identified. To describe
these it is useful to introduce the concept of the hazard rate of a continuous
duration variable, say W. Formally, the hazard rate at time t is 6(¢) :=
limg oPr(W € [t,t + dt))/dt. Informally, this is the rate at which the duration W is
completed at t given that it has not been completed before t. The hazard rate is the
basic building block of duration analysis in social sciences because it can be directly
related to individual behaviour at t. The data on ¥, Z allow for identification of the
hazard rates of T; at t given that T > t. These are called the ‘crude’ hazard rates. If
the T; are independent, then these equal the ‘net’ hazard rates of the marginal
distributions of the T;.

We now turn to a number of approaches that overcome the general non-
identification result for competing risks models. In econometrics, one is typically
interested in covariate or regressor effects. The main approach has therefore been to
specify semi-parametric models that include observed regressors X and unobserved
heterogeneity terms V. With a single risk, the most popular duration model is the
mixed proportional hazard (MPH) model, which specifies that 6(t|X = x, V) =
Y(t)exp(x’B)V for some function /(.). V is unobserved, and the composition of the
survivors changes selectively as time proceeds, so identification from the observable
distributions of T|X is non-trivial. However, it holds under the assumptions that
X 1L Vand var(X) >0 and some regularity assumptions (see van den Berg, 2001, for an
overview of results). With competing risks, the analogue of the MPH model is the
multivariate MPH (MMPH) model. With two risks,

0:(t|x, V) =y, (t) exp(x'f,)V, and
Ox(t|x, V) =y, (1) exp(x'B,) V2.

where T, T,|X, V are assumed independent, so that a dependence of the durations
given X is modelled by way of their unobserved determinants V; and V, being
dependent. Many empirical studies have estimated parametric versions of this model,
using maximum likelihood estimation.

The semi-parametric model has been shown to be identified, under only slightly
stronger conditions than those for the MPH model (Abbring and van den Berg, 2003).
Specifically, Var(X) > 0 is strengthened to the condition that the vector X includes two
continuous variables with the properties that (a) their joint support contains a non-
empty open set in R?, and (b) the vectors /il /32 of the corresponding elements of f3,
and f, form a matrix (/3l [f’z) of full rank. Somewhat loosely, X has two continuous
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variables that are not perfectly collinear and that act differently on 0, and 0,. Note
that, with such regressors, one can manipulate exp(x'ff;) while keeping exp(x'f3;)
constant. The two terms exp(x'f3;) are identified from the observable crude hazards at
t = 0 because at t = 0 no dynamic selection due to the unobserved heterogeneity
has taken place yet. Now suppose one manipulates x in the way described above. If
T, T,|X are independent, then the observable crude hazard rate of T, at t >0, given
that T| > t, does not vary along. But, if T|,T>|X are dependent, then this crude
hazard rate does vary along, for the following reason. First, changes in exp(x'f,) affect
the distribution of unobserved heterogeneity V, among the survivors at ¢, due to the
well-known fact that V; and X are dependent conditional on survival (i.e. conditional
on Ty > t>0) even though they are independent unconditionally. Second, if V, and
V, are dependent, this affects the distribution of V, among the survivors at ¢, which
in turn affects the observable crude hazard of T, at ¢t given that T, > t. In sum, the
variation in this crude hazard with exp(x'f;) for given exp(x'f3;) is informative on
the dependence of the durations. An analogous argument holds for the crude hazard
rate corresponding to cause i = 1.

Note that identification is not based on exclusion restrictions of the sort
encountered in instrumental variable analysis, which require a regressor that affects
one endogenous variable but not the other. Here, all explanatory variables are allowed
to affect both duration variables — they are just not allowed to affect the duration
distributions in the same way. Identification with regressors was first established by
Heckman and Honoré (1989), who considered a somewhat larger class of models than
the MMPH model and accordingly imposed stronger conditions on the support of X.

Although the MPH model is identified from single-risk duration data where
we observe a single spell per subject, there is substantial evidence that estimates
are sensitive to misspecification of functional forms of model elements (see van den
Berg, 2001, for an overview). This implies that estimates of MMPH models using
competing-risks data should also be viewed with caution. It is advisable to include
additional data. For example, longitudinal survey data on unemployment durations
subject to right-censoring can be augmented with register data or retrospective data
not subject to censoring (see for example van den Berg, Lindeboom and Ridder, 1994).
More in general, one may resort to ‘multiple-spell competing risks’ data, meaning
data with multiple observations of Y, Z for each subject. For a given subject, such
observations can be viewed as multiple independent draws from the subject-specific
distribution of Y, Z, on the assumption that the unobserved heterogeneity terms V,,V,
are identical across the spells of the subject. Here, a subject can denote a single
physical unit, like an individual, for which we observe two spells in exactly the same
state, or it can denote a set of physical units for which we observe one spell each.
Multiple-spell data allow for identification under less stringent conditions than single-
spell data. Abbring and van den Berg (2003) showed that such data identify models
that allow for full interactions between the elapsed durations t and x in 0;(¢|x, V), and,
indeed, allow the corresponding effects to differ between the first and the second spell.
The assumptions on the support of X are similar to above. Fermanian (2003)



