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Preface

Most students study calculus in order to use it as a tool in areas other than
mathematics. They desire information about why calculus is important, and
where and how it can be applied. As I wrote this text, I tried to keep these
facts in mind. In particular, before an important concept is defined, prob-
lems which require the concept are presented. After sufficient theory has
been developed, there are many interesting physical and mathematical
examples to draw upon. However, the difficulty is to arouse student interest
at the beginning of a new subject.

To illustrate my approach to calculus, in this text the limit concept is
motivated by referring to three practical problems, one from physics,
another from chemistry, and the third from mathematics. The notion of limit
is then discussed in an intuitive manner, using numerical examples. A pre-
cise definition is introduced a section later, but only after references are
made to previous examples. The definition is then reinforced through the use
of two different graphical techniques. I believe that students should not
spend an entire semester or more repeating the words ‘‘closer and closer,”’
nor should they be literally buried under epsilons and deltas! Limit theorems
are stated and used in examples, but difficult proofs are placed in an appen-
dix, where they may be left as reading assignments, discussed immediately,
or postponed until a later time. A similar philosophy is followed when the
derivative, the definite integral, and other important concepts are intro-
duced.

In addition to achieving a good balance between rigor and intuition, my
primary objective was to write a book which could be read and understood
by college freshmen. Throughout each section I have striven for accuracy
and clarity of exposition, together with a presentation which makes the
transition from precalculus mathematics to calculus as smooth as possible.
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This text contains sufficient material for any of the standard calculus
sequences. The Table of Contents shows the order in which the material is
presented. In general, Chapters 1 through 6 could constitute the equivalent
of a one-semester course for students who only need a basic background
consisting of limits, derivatives, and definite integrals of algebraic functions.
Chapters 7 through 12 would ordinarily make up the second semester of
work; however, Chapter 12 on infinite series could be postponed until the
third semester. In this event, Chapter 13 on curves and polar coordinates, or
parts of Chapter 14 on vectors could be substituted. The remainder of the
text is intended for what is usually referred to as the third semester. Chapter
18 on vector calculus is somewhat unusual for a first course. Some in-
structors may wish to include this material and others not. For this reason it
is placed near the end of the book, where portions may be omitted without
interrupting the continuity of the text. The same is true for Chapter 19 on
differential equations.

A great deal of thought was given to the construction of exercise sets.
There are over 4,000 exercises, enough to keep even the most industrious
student busy! Many are of the drill variety and should be attempted by
everyone. Others are challenging and are intended for more highly moti-
vated students. There is a review section at the end of each chapter consist-
ing of a list of important topics together with pertinent exercises. The review
exercises are similar in scope to those which appear throughout the chapter
and may be used by students to prepare for examinations.

I wish to thank the following individuals, who reviewed the manuscript
and offered many helpful suggestions: James Cornette, lowa State Univer-
sity; August Garver, University of Missouri-Rolla; Douglas Hall, Michigan
State University; Alan Heckenbach, Iowa State University; Simon Heller-
stein, University of Wisconsin; David Mader, Ohio State University; William
Meyers, California State University, San Jose; David Minda, University of
Cincinnati; Chester Miracle, University of Minnesota; Donald Sherbert,
University of Illinois; Charles Van Gordon, Millersville State College; Dale
Walston, University of Texas.

Special thanks are due to Dr. Thomas Bronikowski of Marquette Univer-
sity, who carefully read the entire manuscript, worked every exercise, and
was responsible for many improvements in the text. In addition, he has
written a student supplement which contains detailed solutions for approxi-
mately one-third of the exercises.

I am grateful to Carolyn Meitler for an excellent job of typing the manu-
script, and to the staff of Prindle, Weber & Schmidt, Inc., for their painstak-
ing work in the production of this book. In particular, John Martindale, a
fine editor and friend, has been a constant source of encouragement during
my association with the company. Above all, I owe a debt of thanks to my
family, for their patience and understanding over long periods of writing.

Earl W. Swokowski
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Introduction

What is Calculus?

Calculus was invented in the seventeenth century to provide a tool for solving
problems involving motion. The subject matter of geometry, algebra, and tri-
gonometry is applicable to objects which move at constant speeds; however,
methods introduced in calculus are required to study the orbits of planets, to
calculate the flight of a rocket, to predict the path of a charged particle through
an electromagnetic field and, for that matter, to deal with all aspects of motion.

In order to discuss objects in motion it is essential first to define what is
meant by velocity and acceleration. Roughly speaking, the velocity of an object
is a measure of the rate at which the distance traveled changes with respect to
time. Acceleration is a measure of the rate at which velocity changes. Velocity
may vary considerably, as is evident from the motion of a drag-strip racer or
the descent of a space capsule as it reenters the Earth’s atmosphere. In order
to give precise meanings to the notions of velocity and acceleration it is necessary
to use one of the fundamental concepts of calculus, the derivative.

Although calculus was introduced to help solve problems in physics, it has
been applied to many different fields. One of the reasons for its versatility is
the fact that the derivative is useful in the study of rates of change of many
entities other than objects in motion. For example, a chemist may use deriva-
tives to forecast the outcome of various chemical reactions. A biologist may
employ it in the investigation of the rate of growth of bacteria in a culture.
An electrical engineer uses the derivative to describe the change in current in
an electric circuit. Economists have applied it to problems involving corporate
profits and losses.

The derivative is also used to find tangent lines to curves. Although this has
some independent geometric interest, the significance of tangent lines is of
major importance in physical problems. For example, if a particle moves along
a curve, then the tangent line indicates the direction of motion. If we restrict

INTRODUCTION 1



our attention to a sufficiently small portion of the curve, then in a certain sense
the tangent line may be used to approximate the position of the particle.

Many problems involving maximum and minimum values may be attacked
with the aid of the derivative. Some typical questions that can be answered are:
At what angle of elevation should a projectile be fired in order to achieve its
maximum range? If a tin can is to hold one gallon of a liquid, what dimensions
require the least amount of tin? At what point between two light sources will
the illumination be greatest? How can certain corporations maximize their
revenue? How can a manufacturer minimize the cost of producing a given
article?

Another fundamental concept of calculus is known as the definite integral.
It, too, has many applications in the sciences. A physicist uses it to find the
work required to stretch or compress a spring. An engineer may use it to find
the center of mass or moment of inertia of a solid. The definite integral can be
used by a biologist to calculate the flow of blood through an arteriole. An
economist may employ it to estimate depreciation of equipment in a manu-
facturing plant. Mathematicians use definite integrals to investigate such con-
cepts as areas of surfaces, volumes of geometric solids, and lengths of curves.

All the examples we have listed, and many more, will be discussed in detail
as we progress through this book. There is literally no end to the applications
of calculus. Indeed, in the future perhaps you, the reader, will discover new uses
for this important branch of mathematics.

The derivative and the definite integral are defined in terms of certain limiting
processes. The notion of limit is the initial idea which separates calculus from
the more elementary branches of mathematics. Sir Isaac Newton (1642-1727)
and Gottfried Wilhelm Leibniz (1646—1716) discovered the connection between
derivatives and integrals. Because of this, and their other contributions to the
subject, they are credited with the invention of calculus. Many other mathemati-
cians have added a great deal to its development.

The preceding discussion has not answered the question “What is calculus?”
Actually, there is no simple answer. Calculus could be called the study of
limits, derivatives, and integrals; however, this statement is meaningless if
definitions of the terms are unknown. Although we have given a few examples
to illustrate what can be accomplished with derivatives and integrals, neither
of these concepts has been given any meaning. Defining them will be one of the
principal objectives of our early work in this text.

INTRODUCTION



