ING

Building
Systems from
Commercial
Components

INEER

ENG

W
4
<
3
|—
o
O
i}
Z
0

Kurt C. Wallnau
Scott A. Hissam
Robert C. Seacord

Building Systems
from Commercial
Components

Kurt C. Wallnau
Scott A. Hissam
Robert C. Seacord

v v Addison-Wesley
ton * San Francisco * New York ¢ Toronto
don ¢ Munich ¢ Paris * Madrid
apetown * Sidney * Tokyo * Singapore * Mexico City

A ———

—. Carnegie Mellon

e

= Software Engineering Institute

The SEI Series in Software Engineering

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and Addison-Wesley, Inc. was aware of
a trademark claim, the designations have been printed with initial capital letters or in all capitals.

CMM, Capability Maturity Model, Capability Maturity Modeling, Carnegie Mellon, CERT, and
CERT Coordination Center are registered in the U.S. Patent and Trademark Office.

ATAM; Architecture Tradeoff Analysis Method; CMMI; CMM Integration; CURE; IDEAL; Interim
Profile; OCTAVE; Operationally Critical Threat, Asset, and Vulnerability Evaluation; Personal
Software Process; PSP; SCAMPI; SCAMPI Lead Assessor; SCE; Team Software Process; and TSP
are service marks of Carnegie Mellon University.

ANY MATERIAL FURNISHED BY CARNEGIE MELLON UNIVERSITY AND THE
SOFTWARE ENGINEERING INSTITUTE IS FURNISHED ON AN “AS IS” BASIS. CARNEGIE
MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR
IMPLIED AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF
FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY OR RESULTS
OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT
MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT,
TRADEMARK, OR COPYRIGHT INFRINGEMENT.

The authors and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

The publisher offers discounts on this book when ordered in quantity for special sales. For more
information, please contact:

Pearson Education Corporate Sales Division
One Lake Street

Upper Saddle River, NJ 07458

(800) 382-3419

corpsales @pearsontechgroup.com

Visit AW on the Web: www.awl.com/cseng/

Library of Congress Cataloging-in-Publication Data
Wallnau, Kurt C.
Building systems from commercial components / Kurt C. Wallnau, Scott A. Hissam,
Robert C. Seacord.
p.cm.
Includes bibliographical references and index.
ISBN 0-201-70064-6
1. System design. 2. Component software. I. Hissam, Scott. II. Seacord, Robert C. II1.
Title.

QA76.9.588 W345 2002
005.1°2dc21
2001022846

Copyright © 2002 by Addison-Wesley

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior consent of the publisher. Printed in the United States of America.
Published simultaneously in Canada.

0-201-70064-6
Text printed on recycled paper

123456789 10—EB—0504030201
First printing, July 2001

Preface

There is a real and growing gap between the theory and practice of component-
based software design.

There are, of course, books on component-based design. However, these
books assume that the design task is to develop specifications for software com-
ponents when most component-based design relies on preexisting components.
There is room for both perspectives. However, preexisting components introduce
new and novel design challenges, and their use is becoming increasingly promi-
nent. Pre-existing components mean preexisting component specifications, and
these are constraints on—not artifacts of—a design.

Current component-based design methods are focused on the less interest-
ing and less encountered design problem. The more common and more interest-
ing aspects of the design process are those that are no longer under the control of
the designer.

= Use of preexisting components involves a completely different class of
design problem than arises from component specification. Preexisting com-
ponents involve the designer in selection decisions, while the freedom to
define component interfaces involves the designer in optimization decisions.
The difference between these classes of design problem are only gradually
becoming evident to software engineers, and design methods have not yet
caught up with this growing awareness.

= Use of preexisting components involves a significant loss of control over
fundamental design decisions: how a system is partitioned into components,
what functionality is provided by components, and how components coordi-
nate their activities. In software engineering theory, these are architectural
(that is, design) decisions. This leads to the mistaken conclusion that aggres-
sive use of preexisting components is antithetical to, or at least incompatible
or disjunctive with, software design.

We have described briefly the state of component-based design methods
today, but have not yet supported the assertion that there is a growing gap
between the theory and practice of component-based development. In fact, the
gap does exist and is self-evident, once you know where to look for it.

The trend toward component-based development has been well under way
for more than fifteen years, and has its roots in the commercial software market-
place. Software products, such as relational database management systems, trans-
action monitors, message brokers, event managers, encryption services, Web

XV

xvi Preface

browsers and servers, geographic information systems, product data management
systems, ad infinitum, all satisfy the essential criteria of software component, at
least as this term is coming to be understood by industry. That is, they all are
implementations of functionality, are in binary form, are independently deployed,
are described by a programmatic interface, and support third-party integration.
The commercial marketplace is the primary source of software components.
This is true today, and will remain so for the indefinite future. Indeed, we believe
that components and the software component marketplace are inextricably
linked. Szyperski, in his influential book, shares this belief by observing that a
component must be defined to fill a market niche [Szyperski 98]. However,
Szyperski’s notion of market was largely (although not completely) metaphorical.
In contrast, our use of the term component market refers to something that demon-
strably exists today, complete with component suppliers, component infrastruc-
ture providers, third-party component integrators, and, ultimately, consumers.
Ignoring the effects of the marketplace on software engineering would be
analogous to ignoring the effects of friction on mechanical engineering. In partic-
ular, there are three qualities of commercial software components that together
account for a significant share of the challenges posed by software components.

1. Commercial software components are complex. This complexity is needed
to justify and sustain a component market. Many components are suffi-
ciently complex that even experts in their use do not know all their features.
There are invariably unknowns about component features and behavior.

2. Commercial software components are idiosyncratic. Standards are useful,
but innovative features attract consumers. This means component knowl-
edge is vendor-specific, and integration difficulties arise due to mismatches
among innovative (that is, nonstandard) features.

3. Commercial software components are unstable. New features must be intro-
duced to motivate upgrade, and are needed where competitors have copied
successful features. Component knowledge has a short half-life, and design
assumptions based on component features are fragile.

These qualities of software components, as they are found in the practice of
building real systems, confound the assumptions of an orderly process that
underlie traditional software design methods. However, these new complexities
require a methodological response, since all component-based roads lead to the
commercial component marketplace.

Methodological Response

A central proposition of our approach is that a principal source of risk in component-
based design is a lack of knowledge about how components should be integrated,
and how they behave when integrated. To mitigate this risk, component-based

Preface xvii

design inherently involves exploration and discovery. Acquiring and sustaining
technology (component) competence is a principal motivation for this exploration.

This proposition may appear to some to be a heretical departure from the
canons of software process improvement, which emphasize management skills
over technical skills, and collective behavior over individual contributions.
Indeed, phrases such as “that’s just plumbing” in reference to component integra-
tion details, and “we need to get beyond individual heroics” in reference to reli-
ance on software engineers with extraordinarily deep technology competence, are
indicative of a mismatch between perceptions of what is important in software
process, and the reality of what is needed in component-based development. In
fact, the feasibility of a design is often dependent on “plumbing.” Moreover, the
overall design conception often depends on these low-level details. And there is
no escaping the fact that deep technology competence is essential if these details
are to be mastered.

The following are core elements of our methodological response:

1. We introduce component ensemble as a fundamental design abstraction.
Ensembles expose component dependencies, and shift the emphasis from
selecting individual components to selecting sets of components that work
together (that is, ensembles).

2. We introduce blackboards as a fundamental design notation. Blackboards
depict what is currently known about an ensemble and, just as important,
what remains to be discovered. Blackboards serve to document a design and
known areas of design risk.

3. We introduce a risk-driven discovery process, called R, for exposing design
risk, and for defining ensemble feasibility criteria. We also introduce a pro-
totyping process, called model problems, for generating situated component
expertise, and for establishing ensemble feasibility.

4. We introduce the design space, defined in terms of ensemble relations and
predicates. The design space captures dependencies among ensembles that
arise in response to anticipated market events such as new component
releases, and design hedges where ensemble feasibility is in doubt.

The methodological challenge is to meet the challenge posed by the com-
mercial component market without allowing a) the design process to degenerate
into an exercise in hacking, and b) innovative but unstable technology features to
dominate a design and result in excessive and unnecessary design risk. The
approach we prescribe, we believe, meets this challenge.

xviii Preface

About This Book

GOALS OF THIS BOOK

Our goals are straightforward. Our first goal is to show that software components
pose new methodological challenges for software engineering. In making this
argument, we hope to clarify the nature of these challenges, with particular
emphasis on those challenges rooted in the dynamics of the component market.
Our second goal is to describe, in detail, processes and techniques that respond to
these challenges. We believe these processes and techniques are a necessary
foundation for any methodological response to software components. Our final
goal is to illustrate, in a realistic case study drawn from our own experience in
developing a large enterprise system, the complexity of component-based design,
and the efficacy of our proposed processes and techniques.

INTENDED AUDIENCE

This book is intended for individuals participating in a component-based devel-
opment effort, and for students of software engineering. Although the whole of
the book provides useful information for all of these roles, emphasis may vary.

System Architect. The lead designer will find ensembles, and the techniques
for reasoning about ensemble repair and feasibility, welcome additions to his or
her repertoire. The design space provides the system architect the conceptual lan-
guage for managing the many layers of contingency and repair that characterize
complex component-based systems.

Chief Engineer. While the system architect is responsible for the conceptual
integrity of a design, the chief engineer is responsible for demonstrating its feasi-
bility in practice. The chief engineer will find the R* and model problem pro-
cesses essential to exposing latent design risks that are otherwise masked by the
complexity of components and their interactions.

Project Manager. Project management is concerned first and foremost with
identifying and mitigating project risk. The aggressive search for technical risk
that drives R® (one of the Rs is Risk Identification) meets these concerns. The
design space provides a concise snapshot of the status of a design, and provides a
structure for allocating and tracking engineering effort versus project objectives.

Chief Technology Officer (CTO). Modern enterprise systems are universally
composed from commercial components. Such large-scale and long-lived sys-
tems never leave the design phase and, in fact, inhabit all phases of the develop-
ment life cycle at all times. The CTO will find all of the concepts and techniques
we describe useful for managing technology refresh.

Preface Xix

Software Engineers and Programmers. The frontline developer is the true
unsung hero of component-based development. Project success depends upon
developers to remain current with technology trends. This book provides ammu-
nition for developers who wish to convince their management to invest in tech-
nology training in addition to the usual process training.

HOW TO READ THIS BOOK
This book has three parts, as follows:

= Part [explores the engineering challenges posed by commercial compo-
nents. We describe engineering techniques that meet these challenges, and
describe, wherever possible, workflows for incorporating these techniques
into an enclosing development process.

= Part IT presents an extended case study of a project that we were involved
with starting in 1998. Each chapter illustrates the challenges posed by com-
mercial components and the techniques used to meet these challenges.

= Part III provides advice on how to get started using the techniques described
in this book. We also dust off our crystal ball and make predictions about the
future of component-based development.

Chapter 1 introduces the problems inherent in component-based develop-
ment. Chapters 2 through 4 explain why it is necessary to abandon as unwork-
able some of the more staid precepts of software process. Chapter 5 describes
component ensembles and blackboards, both essential concepts in their own right
and for the material presented in this book. Chapter 6 defines process models for
exploratory design and design risk reduction. Chapters 7 and 8 describe how
design documentation developed by these processes can be managed and reused,
respectively. The remaining chapters in Part I describe specific techniques (really,
families of techniques) for developing component-based systems. These can be
read in any order; you can also skip these and head straight for the case study and
return to the techniques as needed.

The case study describes a chain of events and so these chapters are linked
by a running narrative. However, the chapters are designed to be relatively stand-
alone, although the motivation for the work described in each chapter may be less
than clear if you read them out of order. Chapter 14, which provides a mini-tuto-
rial on public key infrastructure (PKI) and security, is one exception. If you
already understand PKI, skip this chapter. Otherwise, you will need to read it to
understand the details of the case study.

ACKNOWLEDGMENTS

First, the authors wish to express their gratitude to Daniel Plakosh, David Carney,
and Fred Long for their contribution of chapters in this book. We also owe a debt

XX Preface

of gratitude to our manager, John Foreman, for his strong support for this book,
without which we would not have succeeded.

We are also grateful to the reviewers of this book whose insightful com-
ments are reflected throughout our work: Santiago Comella-Dorda, Judith
Stafford, Paul Clements, Tom Shields, Hans Polzer, Will Tracz, Alan Brown, and
John Dean. We also happily acknowledge the intellectual contributions of mem-
bers of the SEI COTS-Based Systems project not already mentioned: Howard
Slomer, Wilfred Hansen, Patricia Oberndorf, Cecilia Albert, Lisa Brownsword,
Edwin Morris, John Robert, and Patrick Place.

Special thanks go to our in-house editor, Len Estrin, for his excellent editing
under a tight deadline. Also, Peter Gordon from Addison-Wesley deserves our
thanks for agreeing to publish this work, and for his timely interventions to keep
things on track.

Last, the authors are indebted to the Software Engineering Institute (SEI) for
providing an unparalleled environment for conducting research in software engi-
neering practice. In particular, we want to acknowledge our tireless librarians
Karola Yourison, Shiela Rosenthal, and Terry Ireland. We offer special thanks to
Steve Cross, the Director of the SEI, for his enthusiastic endorsement of the ideas
expressed in this book.

Contents

Preface XV

PART ONE Fundamentals 1

CHAPTER 1 Components Everywhere 3

1.1 The Software Component Revolution 4

1.2 Component Space 6

1.3 Process, Method, & Notation Assumptions 9
1.4 Terminology and Acronyms 10

1.5 Summary 10

CHAPTER 2 The Unfinished Revolution 11

2.1 The First Software Crisis 12
2.2 The Software Factory Regime 13
2.3 The Second Software Crisis 14

2.4 The Market Regime 15
System Architecture Reflects Technology Market
Design for Change 16
Designing Supply Chains 17
Design in the Face of Misfit 17
Design to Technology Competence 18
Sustaining Competence 18
Design as Exploration 19
Accommodating the Process Singularity 19

2.5 Le Procés c’est mort! Vive le Procés! 20
2.6 Summary 21

2.7 For Further Reading 21

2.8 Discussion Questions 21

CHAPTER 3 Engineering Design & Components
3.1 Fundamental Ideas 23
3.2 Impact of Software Components 25

vi Contents

3.3 Designing with & for Components 28
Ensembles & Blackboards (Chapter 5) 30
Model Problems (Chapter 6) 30
R3 Cycle (Chapter 6) 31
Design Space Management (Chapter 7) 31
Storing Competence (Chapter 8) 32
Multi-Criteria Evaluation (Chapter 9) & Risk/Misfit (Chapter 10) 32
Black-Box Visibility (Chapter 11) 33

3.4 Summary 33
3.5 Discussion Questions 33

CHAPTER 4 Requirements & Components 35

4.1 Fundamental Ideas 36
4.2 Traditional Requirements Engineering 38

4.3 Component-Based Requirements Engineering 42
Dilution of Control 42
Competing Influences on Systems 43
Continuous Character of Requirements Engineering 44
Requirements Discovery 44
The Requirements Centrifuge 45
The Requirements Paradox 47

4.4 Summary 47

4.5 Discussion Questions 48

CHAPTER 5 Ensembles & Blackboards 49

5.1 Fundamental Ideas 50

5.2 The Ensemble Metamodel 51
Component 51
Quasi-Component Types: Technologies and Products 54
Component Interface: Properties and Credentials 55
Inheritance Structure 59
Interactions 59
The Ensemble Metamodel 60

5.3 Modeling Ensembles with Blackboards 62
Blackboard as Collaboration Diagram 62
Quantification and Component Binding 66

5.4 Summary 67

5.5 Discussion Questions 67

CHAPTER 6 Model Problems 69

6.1 Fundamental Ideas 69

6.2 The Role of Toys 71
Install It 71
Imagine the Simplest Spanning Application Possible 72

Contents vii

Implement the Toy 74
Repeat {Observe, Modify} Until Satisfied 74
Throw It Away! 75

6.3 From Toy to Model Problem 76
Hypothesis 79
A Priori Evaluation Criteria 79
Implementation Constraints 79
Model Solution 79
A Posteriori Evaluation Criteria 80
Evaluation 80

6.4 Finding the Right Model Problems 80
Risk Analysis 83
Realize Model Problems 83
Repair Analysis 84

6.5 Repair and Contingency 84
6.6 Summary 85

6.7 For Further Reading 86
6.8 Discussion Questions 86

CHAPTER 7 Managing the Design Space 87

7.1 Fundamental ldeas 88
7.2 Ensembles, Blackboards, Relations 89

7.3 Ensemble Management 91
Notational Conventions 92
Alternative Refinements 92
The Fundamental Ensemble Feasibility Predicate 93
Alternative Remedies 95
Component Bindings 97
View 99
Aggregation 100

7.4 Component & Ensemble Composition 101
7.5 Repository Structure 103

7.6 Summary 104

7.7 Discussion Questions 104

CHAPTER 8 Storing Competence 105

8.1 Fundamental Ideas 105
Ensemble Deconstruction 106

8.2 Packaging with Ensemble Handbooks 108
8.3 Automation 111

8.4 Summary 112

8.5 Discussion Questions 113

viii Contents

CHAPTER 9 The Multi-Attribute Utility Technique 115

9.1 Fundamental Ideas 116
A Mathematical View of MAUT 117
A Hierarchical Model View of MAUT 118
A Process View of MAUT 122
9.2 Evaluating Components with MAUT 125
Limitations of Maut 126
Beyond MAUT: Risk/Misfit, Model Problems, Ensembles 127
9.3 Summary 128
9.4 For Further Reading 128

9.5 Discussion Questions 128

CHAPTER 10 Risk-Misfit 131

10.1 Fundamental Ideas 131
The Utility/Risk Complement 132
Repair Strategy as Risk Mitigator 133
Normative and Formative Evaluation with Risk/Misfit 134
10.2 Feature and Repair Analysis 135
Step 1: Construct Feature/Risk Criterion Mapping 136
Step 2: Quantify the Risk 138
Step 3: Identify Repair Options (Risk Mitigation) 139
Step 4: Quantify Maximum and Residual Risk 140
Step 5: Estimate Repair Cost 141
Step 6: Domination Analysis 142
Step 7: Calculate Cost-to-Risk Ratio for Each Repair 143
Step 8: Assign a Dollar Value to Risk and Select Repair 144

10.3 Component Selection 144

10.4 Why Risk/Misfit? 146
Bandwagon Effect 147
Featureitis 147
Buried Design 147

10.5 Experiences with Risk/Misfit 148
Avoidance of Weighted Criteria 149
Per-Component Criteria 149

10.6 Summary 150
10.7 For Further Reading 150
10.8 Discussion Questions 150

CHAPTER 11 Black Box Visibility 153
11.1 Fundamental |deas 153
11.2 Opportunities for Visibility 155
11.3 Probing 157
11.4 Snooping 159

Contents

11.5 Spoofing 161

11.6 Static Program Analysis 164
Binary Viewers and Editors 164
Disassemblers 167
Decompilers 168

11.7 Summary 170
11.8 Discussion Questions 170

PART TWO Case Study 171

CHAPTER 12 The DIRS Case Study 173

12.1 Sources of Complexity in DIRS 175

12.2 A False Start 175

12.3 Regrouping: The “DeepWeb” Approach 176
12.4 Implications of DeepWeb 177

12.5 Commitments 179
Strategic Decisions 179
Technology Selection 180

12.6 Deceptive Simplicity 181
The HTTP Server Authenticates Users 182
Very Large Images 183
Confidential Data Transfer 183
Reliable Data Transfer 184
Authorization of Rights 184
Editing in ImageEdit 184
User Chosen Web Browser 185

12.7 Summary 186
12.8 For Further Reading 186
12.9 Discussion Questions 186

CHAPTER 13 Applet Ensemble: The Opening 187

13.1 Where are We? 187
13.2 Risk Analysis 188
13.3 Model Problem 189

13.4 Model Solutions 191
Model Solution with Direct HTTP Ensemble 191
Model Solution with Direct IIOP Ensemble 195
Extending the Sandbox 197

13.5 Evaluation 199
13.6 Summary 201
13.7 Discussion Questions 202

X Contents

CHAPTER 14 Public Key Infrastructure 203

14.1 Fundamental |deas 204
Cryptography 204
Encryption Using Public/Private Key Cryptography 206
Digital Signatures and Public/Private Key Cryptography 208
Secure Hashing 209
Whose Public Key Is That Anyway? 210
Digital Certificates 210
Certificate Authorities and Trust 211

14.2 Nonrepudiation 213
PKI in Identification and Authentication 213

14.3 Confidentiality 215
PKI in Secure Sessions 215

14.4 Integrity 217
PKI in Object and Code Signing 217

14.5 Summary 220
14.6 For Further Reading 220
14.7 Discussion Questions 220

CHAPTER 15 A Certificate Odyssey 221

15.1 Where Are We? 221

15.2 Exploring Certificate Space 222
Component Choices 222
Ensemble Context 223
Identification and Authentication 223
Object Signing 225
Secure Sessions 230

15.3 Sustaining the Public Key Infrastructure 232
Certificate Management Policies 232
Certificate Management Software 234

15.4 Evaluation 236
15.5 Summary 237
15.6 Discussion Questions 238

CHAPTER 16 Applet Ensemble: The Middlegame 239
16.1 Where Are We? 239
16.2 Repair Analysis 240
16.3 Risk Analysis 242
16.4 Summary 245
16.5 Discussion Questions 245

Contents

CHAPTER 17 Secure Applet Ensemble 247

17.1 Where Are We? 247

17.2 Model Problem 249
Security Policy 250
Certificate Management Infrastructure 252

17.3 Model Solutions 253
Java Applet Authorization 253
Java Application 257
Evaluation 260

17.4 For Further Reading 260
17.5 Summary 261
17.6 Discussion Questions 261

CHAPTER 18 Instrumented Model Problem 263
18.1 Where Are We? 263
18.2 Model Problem 264

18.3 Model Solutions 265
Ensemble Refinements 266
Instrumenting with the Test Harness 269

18.4 Evaluation 270
18.5 Summary 272
18.6 Discussion Question 273

CHAPTER 19 Sorbet: A Custom Ensemble 275
19.1 Where Are We? 275
19.2 Model Problem 276
19.3 Model Solution 278
19.4 Evaluation 283
19.5 Summary 284
19.6 Discussion Questions 284

CHAPTER 20 Hardware Components 285
20.1 Where Are We? 286

20.2 Risk Analysis 287
What is NICNAK? 287
Risk Analysis 289

20.3 Realize Confidentiality Model Problem 291
Define Model Problem 291
Build Model Solution 291
Evaluate Model Solution 292

xi

xii Contents

20.4 Realize Authorization Model Problem 293

Define Model Problem 293
Build Model Solution 293

20.5 Repair Analysis 302
20.6 Summary 303
20.7 Discussion Questions 304

CHAPTER 21 Into the Black Box 305

21.1 Where Are We? 305
21.2 Define Model Problem 306

21.3 Model Solution 307
Database Mechanism 307
Certificate Database 309
Key Database 314

21.4 Evaluation 321
21.5 Summary 322
21.6 Discussion Questions 322

CHAPTER 22 Applet Ensemble: The Endgame

22.1 Where Are We? 323

22.2 Repair Analysis 324

22.3 Risk Analysis 326

22.4 Summary 326

22.5 Discussion Questions 327

CHAPTER 23 Secure Applet Ensemble Redux

23.1 Model Problem 329

23.2 Model Solution 331
Certificate Interoperability Toy 332
Netscape Database (NDBS) Toy 337
Model Solution 337
Netscape Navigator Test 340
Internet Explorer Test 341

23.3 Evaluation 342
23.4 Summary 344
23.5 Discussion Questions 344

CHAPTER 24 Conclusion & Retrospective 345

24.1 Multi-Attribute Evaluation 346
24.2 Conclusion 349

323

329

