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Foreword

The Symposium on Probabilistic Aspects of Life Prediction was held in Miami, FL on 6-7
November 2002. ASTM International Committee E8 on Fatigue and Fracture served as sponsor.
Symposium chairmen and co-editors of this publication were W. Steven Johnson, Georgia Institute
of Technology, Atlanta, GA and Ben Hillberry, Purdue University, West Lafayette, IN.



Overview

As fatigue and fracture mechanics approaches are used more often for determining the useful life
and/or inspection intervals for complex structures, realization sets in that all factors are not well
known or characterized. Indeed, inherent scatter exists in initial material quality and in material per-
formance. Furthermore, projections of component usage in determination of applied stresses are in-
exact at best and are subject to much discrepancy between projected and actual usage. Even the mod-
els for predicting life contain inherent sources of error based on assumptions and/or empirically fitted
parameters. All of these factors need to be accounted for to determine a distribution of potential lives
based on a combination of the aforementioned variables, as well as other factors. The purpose of this
symposium was to create a forum for assessment of the state-of-the-art in incorporating these uncer-
tainties and inherent scatter into systematic probabilistic methods for conducting life assessment.

This is not the first ASTM symposium on this subject. On 19 October 1981 ASTM Committees E9
on Fatigue and E24 on Fracture Testing (today they are combined into Committee E8 an Fatigue and
Fracture) jointly sponsored a symposium in St. Louis, MO. The symposium resulted in an ASTM
STP 798, “Probabilistic Fracture Mechanics and Fatigue Methods: Applications for Structural
Design and Maintenance.” The STP contained 11 papers. Both of the editors of this current STP were
present. At that time, we were very involved with deterministic crack growth predictions under spec-
trum loading, trying to be as accurate as possible. We had little use for the statistics and probability.
One thing that stood out in my listening to the speakers was the level of probability that they were
predicting using the ASME boiler and pressure vessel code (author was G. M. Jouris). Some of their
estimated probabilities of failure were on the order of 1 X 107!, A member of the audience noted
that the inverse of this number was greater than the number of atoms in the universe. The audience
laughed.

As time went by, a greater appreciation was developed for all the uncertainties in real world ap-
plications (as opposed to a more controlled laboratory testing environment). This confounded by
needs to assure safety, avoid costly litigation suits, set meaningful inspection intervals, and establish
economic risks, have brought more emphasis to the need to use probability in the lifing of compo-
nents. Since the aforementioned symposium was almost 20 years ago, ASTM Committee E8 agreed
to sponsor this symposium. The response was outstanding.

On 6-7 November 2002, in Miami, FL, 29 presentations were given. Lively discussions followed
essentially all the talks. The presentations collectively did a great job on assessing the current state of
the art in probabilisitc fatigue life prediction methodology. We would like to take this opportunity to
recognize and thank our session chairs: Dr. Christos Chamis, Dr. Duncan Shepherd, Dr. James
Larsen, Prof. Wole Soboyejo, Mr. Shelby Highsmith, Jr., Dr. Fred Holland, and Mr. Bill Abbott. A
special thanks to Dr. Chamis for organizing a session.

Due to a number of factors, including paper attrition and a tough peer review process, only 17 pa-
pers have made it through the process to be included in this Special Technical Publication. The 17 pa-
pers have been divided into three topical groups for presentation in this publication: four papers are
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in the section on Probabilistic Modeling; seven papers are in the section on Material Variability; and
six papers are in the section on Applications.

We sincerely hope that you find this publication useful and that it helps make the world a safer
place.

Prof. W. Steven Johnson

School of Materials Science and Engineering

George W. Woodruff School of Mechanical Engineering
Georgia Institute of Technology

Atlanta, GA

Prof. Ben M. Hillberry
School of Mechanical Engineering
Purdue University

West Lafayette, IN
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Charles Annis'
Probabilistic Life Prediction Isn't as Easy as It Looks

ABSTRACT: Many engineers effect "probabilistic life prediction" by replacing constants with
probability distributions and carefully modeling the physical relationships among the
parameters. Surprisingly, the statistical relationships among the “constants” are often given
short shrift, if not ignored altogether. Few recognize that while this simple substitution of
distributions for constants will indeed produce a nondeterministic result, the corresponding
"probabilities" are often woefully inaccurate. In fact, even the "trend” can be wrong, so these
results can't even be used for sensitivity studies. This paper explores the familiar Paris equation
relating crack growth rate and applied stress intensity to illustrate many statistical realities that
are often ignored by otherwise careful engineers. Although the examples are Monte Carlo, the
lessons also apply to other methods of probabilistic life prediction, including FORM/SORM
(First/Second Order Reliability Method) and related “fast probability integration” methods.

KEYWORDS: life prediction, crack growth, Paris equation, probability, statistics, simulation,
Monte Carlo, nondeterministic, probabilistic, joint, conditional, marginal, multivariate

There is more to probabilistic life prediction than replacing constants with probability
densities. The purpose of this study is to demonstrate this by comparing the observed
distribution of lives of 68 nominally identical crack growth specimens with Monte Carlo
(MC) simulations of lives based on the distributions of their Paris law parameters. It will
be shown that several common MC sampling techniques produce wildly inaccurate
results, one with a standard deviation that is 7X larger than was exhibited by the specimen
lives themselves. The cause of such aberrant behavior is explained. It is further observed
that the Paris law parameters are jointly distributed as bivariate normal, and a Monte
Carlo simulation using this joint density reproduces the specimen mean and standard
deviation to within a few percent. The lessons here apply to any regression model, not
just to these data, nor only to crack growth rate models, nor are they limited only to MC.

The Data

In the mid-1970s Dennis Virkler, then a Ph.D. student of Professor Ben Hillberry at
Purdue, conducted 68 crack growth tests of 2024-T3 aluminum [1,2]. These tests were
unusual for several reasons. They were conducted expressly to observe random behavior
in fatigue. While almost all crack growth tests measure crack length after some number
of cycles, Virkler measured cycle count at 164 specific crack lengths. This provided a
direct measure of variability in cycles, rather than the usually observed variability in
crack length at arbitrary cyclic intervals. While two of the specimens appear to stand out
from their brethren, the purpose of this investigation is not to play Monday Moming

Manuscript received Aug. 29 2002; accepted for publication Aug. 29 2003; published February 2004.
Presented at ASTM Symposium on Probabilistic Aspects of Life Prediction on Nov. 6, 2002 in
Miami Beach, FL; W. S. Johnson and B. Hillberry, Guest Editors.
' Principal, Charles Annis, P.E., Statistical Engineering, Palm Beach Gardens, FL 33418-7161.
Charles. Annis@StatisticalEngineering.com
Copyright © 2004 by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken,
PA 19428-2959. 5
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Quarterback 25 years after the game, and there is no reason not to consider all 63
specimens here. In any event their exclusion changes only the numeric details. The
fundamental results are not affected, nor are they affected by using a normal, rather than
lognormal density to describe them.

It is common practice to fit a single da/dN vs. 4K curve through multiple specimens
of the same material tested under the same conditions of temperature, stress ratio, and
frequency. In the study reported here, however, 68 individual Paris models were used.
Fitting a single curve describes the mean trend behavior very well, but it obscures
random specimen-to-specimen differences. Since real applications are subjected to
similar randomness, it is necessary to capture that effect as well.

Fatigue Lives Are Lognormal

It has been long recognized that fatigue lives are satisfactorily modeled using the
lognormal density. For these 68 specimens that model is less than optimal and there is
some evidence that the probability density may be a mixture of two densities. It is not the
purpose of this paper to repeat the earlier work by Virkler, Hillberry and Goel [2], and as
it turns out, the actual form of the distribution of the specimen lives themselves only
influences the numeric details of this study, since each specimen’s crack growth rate
curve was treated individually. (Treating the data as normal, however, results in a bias in
the simulated mean of about 5%. The bias using the lognormal is negligible.)

Conventional Monte Carlo Simulation

Unlike many engineering analytical results, probability estimates are difficult to
verify experimentally. This unfortunate reality has perpetuated the misuse of a valid
statistical tool, and the consequences may not be apparent for years to come.

Most engineering Monte Carlo simulations are performed this way.

Set up a conventional deterministic analysis;

Replace constants with probability distributions;

Sample once from each distribution;

Compute the deterministic result and store the answer;

Repeat steps 3 and 4 many times;

Compute the mean and standard deviation of the collected results.

Sadly, many engineers are unfamiliar with the implicit statistical assumptions that are
at the foundation of Monte Carlo simulation, but as been observed elsewhere [3] "Simply
not understanding the nature of the assumptions being made does not mean that they do
not exist."

What possibly could be wrong with this paradigm? Luckily we (the engineering
community) have a dataset that is nearly perfect for answering this question, viz. the data
collected by Virkler and Hillberry, as part of Virkler’s Ph.D. dissertation. Professor
Hillberry graciously made these available for further study.

SUA LN

Monte Carlo Modeling Specifics

After fitting individual Paris equations to each of the 68 specimens, the mean and
standard deviation for the individual Paris parameters, intercept, C, and slope, n, were
computed. The well-known Paris model for fatigue crack growth is given in equation 1

da/dN =10°(AK)" 8}
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where da/dN is the crack growth rate, in mm per cycle, and AK is the applied stress
intensity factor, in MPavm, given by equation 2.

AK = Aa\/lt—c; f(a| geometry) (2)

Here, Ao is the testing stress range, OGmax — Omin, @ is the crack length, and fl)is a
function of the specimen (or component) geometry and crack length. Of course, when
equation 1 is plotted on a log-log grid this is a straight line with intercept C and slope n.
Assuming for the sake of simplicity that there was no variation in the starting crack size,
the final crack size, or the test stress, the calculated cyclic lifetime can be computed from
the individual Paris fits using equation 3.

daldN =10° [soJzaf(a| geometry)|”
dN = da/{lOC [Ao\/ﬁf(a | geometry)]" }

N= _“:M 10°¢ [AO'\/E f(a| geometry)] “da 3)

In practice this integration is usually carried out numerically.

To conduct the usual MC simulation »; is computed from k(C;, n) where k() is
equation 3, and i ranges from 1 to say 1000 (or 10 000).

Many MC practitioners then calculate a mean and standard deviation for N, or
logo(N), report the results and stop there, since there is nothing against which to compare
the distribution of computed values for N;. Virkler’s data show the observed distribution
of actual specimen lives and thus provide a direct comparison for these calculations.

The Paris Law is Adequate

Before going further it is prudent to check the goodness-of-fit of the Paris equation
itself. If the underlying model for crack growth rate is inadequate there is little hope for
accurate life prediction based on it. The sigmoidal shape of the da/dN AK data (Fig. 1)
suggests a model such as the SINH [4] might do a better job than the straight line Paris
model (and it does, increasing the ratio of standard deviations of calculated lives, 0.918
for Paris, to 0.957 for the SINH by reducing the disagreement between calculated and
observed specimen lives from 8.2% to 4.3%). The added model complexity, however,
obscures the real issue here, namely the abysmal performance of a rather common Monte
Carlo simulation (700% error in predicted scatter). Since the Paris law is adequate it is
used here for simplicity.

A Note on Modeling

Statisticians often assess the efficacy of a mathematical model by decomposing the
sums-of-squares of differences between the model and the observations. We, however,
are less interested in the differences between the measured crack growth rates, da/dN;,
and their Paris model, than we are in their integrated collective behavior, as given by
equation 3. Such an integrated metric summarizes all sources of “error” - material
variability, lack-of-fit, testing uncertainties — into the difference between the observed
specimen life, and that provided by equation 3. We thus have traded the potential for
better arithmetic diagnostics (scrutiny of the Paris model) for a more direct measure of
what we are really interested in - life prediction performance.
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FIG.1—da/dN vs. DK are S-shaped.
How Well Does the Conventional Monte Carlo Algorithm Perform?

The conventional MC simulation of 1000 samples, with independent model
parameters, C and n, did an acceptable job predicting the mean lifetime, after the log
transform. Because the data are skewed to the right, as all fatigue data are, the
untransformed simulated results overestimate means of the symmetrical normal models
slightly.

The simulated standard deviations were another matter: The actual observed
standard deviation for 68 specimens is 0.03015 log;o units (18 447 cycles)’>. The
conventional MC simulation of 1000 samples, with independent model parameters, C and
n, produced a standard deviation of 0.19778 log units (140 261 cycles), 6.6X too large!

A closer look shows the situation gets even worse. To be fair, the best possible Paris
model would use the 68 individual Paris fits, since no simulation could be expected to be
better than the actual specimens’ behavior. Using the 68 Paris equations in equation 3
produces a standard deviation of 0.02769 log;e units (16 332 cycles), which is smaller
than the observed standard deviation by about 8%. Why?

Of the 68 specimens, two seemed to exhibit longer lives than what might have been
inferred by from the behavior of the other 66. All 68 specimens were used here. Since
the actual specimen life doesn’t directly influence its da/dN vs. AK behavior, predicted
lives based on these two Paris fits would be more like their sister specimens, resulting in
the smaller standard deviation for the integrated Paris equations. So to provide a fair

? The analyses were carried out using log,g(cycles), and again using untransformed cycles. The
reported Jog, result can not, of course, be determined simply by taking the log of the mean and standard
deviation of the untransformed results. All calculations are summarized in Tables 1 and 2 and Fig. 5.
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comparison with simulated Paris models, the behavior of the 68 integrated Paris laws
should be the baseline. Thus the baseline scatter is 0.02769 log ;o units.

Comparing the simulation’s standard deviation of 0.19778 log;y units with the
integrated Paris law baseline shows the simulation to have overestimated the scatter by
0.19778 / 0.02769 or about 7.1X. This is awful. Such a simulation would be worse than
useless since it would likely compel a costly redesign. Put in perspective, the probability
of failure before about 207 000 cycles is 0.1%, determined from the mean and standard
deviation of the 68 specimens’ (log-transformed) lives. The MC simulation puts this
failure rate at about 33%, an overestimation of failure rate of over 300X.

This absurd simulation result has been observed by every engineer who has
performed similar MC simulations, since it doesn’t require any statistics to detect an
answer that is wrong by a factor approaching an order of magnitude in standard
deviation. Sadly the most common palliatives proposed as remedies do not perform
much better.

What Went Wrong?

The model parameters, C and 7, are assumed to be normally distributed. Is this a
good assumption in this case?

187 Xbar=-6.5024 20| Xbar, =2.8715
147 Stdev. =0.1426 Stdev,, = 0.1652

= . . : 0- >
68 68 87 66 65 H4 H3 62 6.1 22 23 24 25 26 27 28 29 30 31 32 33 34
C n

FIG. 2—Histograms of Paris Model Parameters C and n.

Figure 2 presents histograms of both model parameters. While somewhat
approximate, the normal density is not an altogether improper model; surely these
departures from the normal could not have caused the 7X inflation of the standard
deviation. A closer look at the figures provides a clue. There are two observations that
are high for parameter C, and two that are Jow for parameter n. Perhaps these should be
considered as pairs, rather than as independent observations. Figure 3, a schematic plot
of crack growth rate vs. stress intensity on a log-log grid, shows why C and #n behave in
tandem: when the slope, n, is shallow the intercept, C, must be larger for the resulting line
to go through the data. Similarly, a steeper slope requires a smaller intercept.
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FIG. 3—Schematic showing why Paris Parameters must be correlated.
Note that in this schematic the intercept is C = log10(da/dN)= -10, at log] 0(DK)=0.

Possible Remedies (All of Them Wrong)

Assuming C and 7 to be independent, when they obviously are not (the most common
error in Monte Carlo modeling), results in unacceptable error in simulated lifetime
scatter. Possible remedies that have been suggested are:

1. nassumed fixed, C is normal
2. C assumed fixed, n is normal
3. C assumed a linear function of n.

Fixing either n or C seems at first blush like a reasonable solution, and it does reduce
the over-prediction of scatter from 7./X to 5.1X (n fixed) or 5.4X (C fixed). While this is
an obvious improvement, the error remains wildly unacceptable. Sadly, it is at this stage
when the standard deviation of C or n is arbitrarily “adjusted,” i.e., fudged until a
believable result is achieved.

Figure 4 also shows why assuming either C or n as fixed is not reasonable. The
horizontal line is at n = 2.87, the average of 68 Paris slopes. This is a reasonable value
only when -6.58 < C < -6.45. When C is outside this range, as it will be often, the
resulting simulated combination is very, very improbable. In fact observations in either
the first or third quadrants (large » with large C, or small n with small C) are exceedingly
unlikely in reality but occur about half the time in uncorrelated simulation.

Another option for remedy suggests itself since the two parameters are obviously so
closely related: let one be a function of the other. A linear fit of C=b; + b;n, with n
being sampled from a normal density, does indeed improve things. But this time the
resulting error ratio is 0.51, ie.: the scatter has been over-corrected, and now is
underestimated by almost half. Clearly this nonconservative result is also unacceptable.
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FIG. 4—Paris Parameters C and n are obviously correlated (r=0.982).

To understand why such an appealing suggestion should have such an undesirable
result, look again at Fig. 4 which also shows the 95% confidence ellipse for the C and n
pairs. Assuming that one is a linear function of the other, in effect collapses this ellipse
into a line, thus underestimating the overall variability. (The confidence ellipse also
suggests that two of the tests may be different from the others, as was noted earlier.)

The Right Way

We have considered four very common oversights in Monte Carlo modeling. So,
how do you do it correctly?

Parameters estimates for C and n are jointly distributed. (Notice that this is not
optional. It is how regression model parameters naturally behave. You can’t choose the
ratio of a circle’s circumference to its diameter to be an integer because it might be more
convenient. The fact is that 7 is inconveniently transcendental. Similarly, regression
parameter estimates are asymptotically multivariate normal, and correlated, so any
realistic simulation must sample from their correlated joint density.) Modeling them as
bivariate normal in a MC simulation produces a standard deviation of 0.02802 in logl0
integrated lifetime for 1000 samples, which is very close to the standard deviation of the
integrated individual Paris fits, 0.02769. The ratio of standard deviations is 1.012. In
other words, correctly modeling the joint behavior reduces the greater than 700% error
in the estimate of the standard deviation to about 1%.

Notice, too, that replacing a constant n (the horizontal line in Fig. 4) with a
(conditional) probability density has the paradoxical effect of decreasing the resulting
variability in calculated lifetime, since it corrects Mistake #2 (see Tables 1 and 2). This
refutes the common misconception that replacing a constant with a probability density in
a Monte Carlo simulation always results in increased scatter in the output. All these
results are summarized in Tables 1 and 2 and in Fig. 5.

TABLE 1—MC Results Assuming Cycles are LogNormally Distributed.

Correct Mistake #1 Mistake #2  Mistake #3 Mistake #4

Actual N Eqn3N C, n joint C, n indept. n fixed C fixed C=by+ b;*n
mean 5.40916 5.39773 5.39909 5.41404 5.39414 5.39911 542217
stdev  0.03015 0.02769 0.02802 0.19778 0.14084 0.14872 0.01426




