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preface

In a world that seems to be rapidly filling with mathematics books, the appearance
of still another requires at least an explanation if not an apology, especially when
the book at issue is on such a venerable and thoroughly exposed subject as ele-
mentary differential equations. Of course, the very existence of this book in pub-
lished form stands as an assertion of the authors’ conviction that it does in fact
merit publication. But this hardly justifies the deed; hardly answers the just and
reasonable question: Why another book on differential equations?

For those familiar with the subject, that is, for those who teach it rather than
study it, a glance at the table of contents should provide the answer. We have
attempted to write a book which rescues the traditional first course in differential
equations from the wasteland of unrelated techniques and dreary formalism in
which it has all too long been lost. We are thereby acting upon our prejudice that
applications of mathematics cannot be taught in isolation from the mathematical
theory that supports them—not, at least, without crippling the student’s ability
to respond to the changing techniques of his own field and rendering him powerless
to communicate with the next generation of mathematicians and scientists who
will be introducing new techniques. Our book, in short, attempts to restore to the
subject of differential equations a measure of mathematical relevance and, hope-
fully, elegance too. As such it qualifies as a “modern” introductory text on differ-
ential equations.

There are, of course, many ways in which this can be done, all viable, and each
possessing its particular merits and shortcomings. The approach which we have
chosen uses linear algebra as its starting point, and has the theory of linear differ-
ential equations as its major theme. This, we believe, can be defended on numerous
grounds. First, the theory of linear differential equations is an especially easy and
rewarding application of the ideas discussed in elementary linear algebra. As
such it furnishes an excellent example of the way in which apparently unrelated
mathematical disciplines reinforce and illuminate one another to their mutual
benefit. This is an important lesson for students to learn, and the opportunity to
teach it in this context is too valuable to let pass. Second, beginning books on the
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subject of differential equations inevitably use linear algebra either openly or other-
wise. This being the case, there is much to be said for bringing it out into the
open where it can be properly treated with tools appropriate to the task. The
resulting increase in understanding by the student is certainly worth the added
effort. Finally, the student who approaches the subject of differential equations
equipped with and willing to use a knowledge of linear algebra is able to proceed
much further in a first course than is the student who either lacks this knowledge
or else lacks the maturity to aspire to more than a catalog of special techniques.
In any event, the latter student will be forced to master this more general approach
if he wishes to get beyond the rudiments of the subject, and he is therefore well
advised to adopt it from the outset. Such, at least, are the convictions of the present
authors, and this book is an attempt to vindicate those convictions in print.

So much for general remarks directed to those who know the subject.

As for those who do not, that is, for students rather than instructors, much of
what we have just said will be unintelligible. Unfortunately, this is in the nature
of things, and must remain so until the book has been read. As with all authors,
we hope that it will be a rewarding and stimulating experience. Bon voyage!

Remarks; Useful or Otherwise

I. Since this book assumes nothing more than a knowledge of elementary cal-
culus, but uses linear algebra throughout, the first chapter is devoted to an exposi-
tion of the elements of linear algebra. Anyone with a modest knowledge of that
subject should be able to begin with Chapter 2, using the first chapter for reference.
A similar remark applies to the first half of Chapter 5 where matrices and systems
of linear equations are studied. Outside of this, the first seven chapters of the book
cover the standard material on ordinary linear differential equations usually dis-
cussed in a first course on differential equations.

On the other hand, our use of linear algebra has enabled us to explore a number
of topics in the theory of linear differential equations more thoroughly than is
customary in a book at this level. For instance, by studying thec Wronskian
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within the context of the theory of linear dependence and independence, we are
able to bring the discussion to the point where the Sturm separation and compar-
ison theorems can be easily proved. Similarly, by viewing the method of variation
of parameters as a technique for inverting linear differential operators, we are
able to introduce the notion of Green’s functions and their associated integral
operators for initial-value problems. This is particularly rewarding when we come
to the study of the Laplace transform since we are then able to present a unified
treatment of what all too often strike the student as unrelated techniques for
solving differential equations.

In Chapter 8 we take up the study of first-order nonlinear equations, and intro-
duce most of the time-honored methods for solving special classes of equations of
this type. Since this material is logically independent of everything that has gone
before, the instructor who is possessed of the quaint idea that a course in differ-
ential equations ought to begin by studying a differential equation or two can begin
with this chapter and then continue with Chapter 1 or 2 as appropriate.

In many respects Chapter 9 is the climax of the book. Here we introduce the
notion of fixed points and contraction mappings, and then go on to prove the
existence and uniqueness theorems which have been used as the theoretical basis
for much of our earlier work. Finally, in Chapter 10 we introduce the notion of
stability, and classify the stability (or instability) of the solutions of plane auton-
omous systems of differential equations.

I. The internal reference system used in the text works as follows: Items in a
particular chapter are numbered consecutively as, for example, (3-1) to (3-100).
The first numeral refers to the chapter in question, the second to the numbered
item within that chapter.

III. Throughout the book we have followed the popular device of indicating the
end of a formal proof by the mark I in the belief that students derive a certain
comfort from a clearly visible sign telling them how far they must go before they
can relax. As usual, sections marked with an asterisk can be omitted without
courting disaster, while problems so marked are invitations to just that.
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IV. Finally, the authors would like to extend their thanks to Professor Fred W.
Perkins who provided the answers to many of the problems, to Dartmouth College’s
time-shared computer which contributed a number of the figures, and to the
Addison-Wesley staff who saw the book through press.

December, 1967 D.LK.
R.GK.

D.R.O.
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preliminaries: the elements of

linear algebra

1-1 INTRODUCTION

The Cartesian plane of analytic geometry, denoted by ®2, is one of the most
familiar examples of what is known in mathematics as a real vector space. Each
of its points, or vectors, is an ordered pair (x, x3) of real numbers whose individual
entries, x; and x,, are called the components of that vector. Geometrically, the
vector x = (x;, xp) may be represented by an arrow drawn from the origin of
coordinates to the point (x;, x5) as shown in Fig. 1-1.*

X= (XI!XZ)

X1

FIGURE 1-1 FIGURE 1-2

If x = (x1,x2)andy = (y;, y.) are any two vectors in ® 2, then, by definition,

their sum is the vector
X+ y=(x1+ yi,X2 + y2) (1-1)

obtained by adding the corresponding components of x and y. The graphical
interpretation of this addition is the familiar “parallelogram law,” which states
that the vector x 4 y is the diagonal of the parallelogram formed from x and y
(see Fig. 1-2). It follows at once from this definition that vector addition is both

* Throughout this book we shall use boldface type (i.e., X, y, ...) to denote vectors.
1



2 PRELIMINARIES: THE ELEMENTS OF LINEAR ALGEBRA [ CHAP. 1

associative and commutative in the sense that

x+@+2)=x+y +z (1-2)
x+y=y+x (1-3)
Moreover, if 0 denotes the vector (0, 0), and —x the vector (—x;, —x3), then
x + 0 = x, (1-4)

and
X+ (—=x) =0 (1-5)

for every vector x = (xy, xp). Taken together, Egs. (1-2) through (1-5) imply
that vector addition behaves very much like the ordinary addition of arithmetic.
In addition to being able to add vectors in ® 2, we can also form the product of a
real number « and a vector x. The result, denoted ax, is the vecror each of whose
components is « times the corresponding component of x. Thus, if x = (x;, x»),

then
ax = (axi, axs). (1-6)

Geometrically, this vector can be viewed as a “magnification” of x by the factor «,
as illustrated in Fig. 1-3.

The principal algebraic properties of
this multiplication are as follows: 2x = (2x1,2X5)
ax +y) =oex +ay, (1-7)
X =(x),X2)
(e + B)x = ax + Bx, (1-8)
(aB)x = a(Bx), 1-9
Ix = x. (1-10) e — i)
The validity of each of these equations FIGURE 1-3

can be deduced easily from the definition

of the operations involved, and save for (1-9), which we prove by way of illustra-
tion, they are left for the student to verify. To establish (1-9), let x = (x, x2) be
an arbitrary vector in ®2, and let « and 8 be real numbers. Then by repeated use
of (1-6) we have

((eB)x1, (aB)x2)
= (a(Bx1), a(Bx2))
a(Bx1, Bx2)
a(B(x1, x32))

= a(Bx),

(eB)x

|

II

I

which is what we wished to show.



1-1 | INTRODUCTION 3

The reason for calling attention to Eqs. (1-7) through (1-10) is that they,
together with (1-2) through (1-5), are precisely what make ®? a real vector
space. Indeed, these equations are none other than the axioms in the general
definition of such a space, and once this definition has been given, the above
discussion constitutes a verification of the fact that ®? is a real vector space.
But before giving this definition, we look at another example.

This time we consider the set C[a, b] consisting of all real-valued, continuous
functions defined on a closed interval [a, b] of the real line.* For reasons which
will shortly become clear we shall call any such function a vector, and, following
our general convention, write it in boldface type. Thus fis a vector in C[a, b]if and
only if fis a real-valued, continuous function on the interval [a, b]. Typical examples
are such functions as sin x, cos x, and e® which are vectors in C[a, b] for any
interval [a, b].

At first sight it may seem that C[a, b] and ®* have nothing in common but
the name “real vector space.” However, this is one of those instances in which
first impressions are misleading, for as we shall see, these spaces are remarkably
similar. This similarity arises from the fact that an addition and multiplication
by real numbers can also be defined in €[a, b] and that these operations enjoy
the same properties as the corresponding operations in G2,

Turning first to addition, let f and g be any two vectors in €[a, b]. Then their
sum, f + g, is defined to be the function
(i.e., vector) whose value at each point x | |
in [a, b] is the sum of the values of f and
g at x. In other words,

f+ 2)(x) = f(x) + g(x)  (I-11)

\

b
were the functions sin x and cos x, their
sum f + g would be the function sin x +
cos x. In particular the reader should note FIGURE 1-4
that f + g always belongs to @[a, b] whenever f and g do.

It is now easy to verify that apart from notation and interpretation Egs. (1-2)
through (1-5) remain valid in C[a, b]. In fact, the equations

(see Fig. 1-4). For example, if f and g ai I
l |

f+@+h=>(+g +h (1-12)
and

f+g=g+f (1-13)

follow immediately from (1-11), while if 0 denotes the function whose value is

* The closed interval [a, b] is the set of all real numbers x such that a < x < b;i.e.,
[a, b] is the interval from « to b, end points included. By contrast, if the end points are
not included in the interval, we speak of the open interval from a to b, and write (a, b).



