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Preface

The field of structural dynamics was founded through the pioneering works of Newton in his
‘Principia’ (1686), D’Alembert’s ‘Traité de Dynamique’ (1743), Euler’s ‘Methodus inveniendi
lineas curvas ...", (1744) and others. Yet, the developments in this field are more exciting than ever,
partly because of researchers desire to know the laws of nature and man-made structures, and the
need to deal with the behaviour of new structures subjected to seismic, wind, wave, traffic,
mechanical impact and other actions. Dynamic effects have become increasingly important for the
serviceability and safety of engineering structures such as buildings, bridges, offshore platforms,
vehicles and other structures.

Today, structural dynamics analysis is carried out with tools based on differential or variational
formulations and continuum and fracture mechanics. The stochastic nature of loads and nonlinear
structural behaviour are accounted for. Laboratory and in-service investigations in conjunction with
system identification provide the basis to develop and validate theoretical models both for the
structure and the material properties.

Following the successful first EURODYN conference organized by Professor Kritzig and his
colleagues in Bochum in 1990, the aim of this second conference is to provide a forum for engineers,
researchers, university teachers and other professionals for discussing recent developments in
dynamics of structures. The aim is to stimulate the exchange of information between various
disciplines in science and engineering and various fields of application. This gathering is particularly
intended to advance closer co-operation within Europe. However, we appreciate the interest shown
in the conference by our colleagues outside Europe and the exchange of information with them.

These proceedings contain papers contributed from 35 nations which form the basis for the
conference.

Finally, I would like to thank Professor Kritzig and his colleagues for initiating the EURODYN
conference; our sponsors; and A.A.Balkema Publishers for pleasant cooperation in producing these
proceedings.

Torgeir Moan

NTH
March 1993
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A comparison of seismic wave attenuation between intraplate Norway
and plate margin areas

A.Dahle & H.Bungum
NORSAR, Kjeller, Norway

ABSTRACT: A detailed recent study of seismic wave attenuation characteristics in Norway has
made it possible to compare more closely the difference in this respect between plate interiors and the
tectonically much younger areas of the plate margins. It is showed that the latter areas generally
attenuate the waves much faster at large distances, which is expected because the rocks there have
much lower quality factors. What is more important, however, is the quantitative demonstration in
this work of the relative importance of the near-field region and in particular of how seismic attenua-
tion models may differ with respect to the way the resulting ground motions scale with earthquake
magnitude.

1 INTRODUCTION The question of whether the basic generic

processes might be different for interplate and

The idea that it could be possible to approach
scientifically the problem of estimating the
potential danger from future earthquakes came
into the world as a result of the 1906 San Fran-
cisco earthquake. California has since then
served as an important center for earthquake
engineering research, and it is only during the
last few decades that these efforts have become
a world-wide concern.

By the end of the 1960’s the new concept of
plate tectonics, which revolutionized the geo-
sciences, influenced decisively also the meth-
ods and means for estimating seismic potentials
for the different parts of the world. The new
global tectonics as it was developed initially
modelled the interior of the plates as rigid bod-
ies, concentrating on the processes and dynam-
ics at the plate margins.

During the 1980’s an increasing awareness
of the seismic potentials in the interior of plates
developed, exemplified by the discovery of
some very large (above magnitude 8) intraplate
earthquakes. Fig. 1 shows that earthquakes are
quite frequent also in Fennoscandia, even
though the largest there in historical times have
been below 6 in magnitude (Bungum et al.,
1991).

intraplate earthquakes is still a subject of much
research, while a clearer difference in this
respect is found in the way in which the earth-
quake waves carries the energy and thereby the
damage potential out from the focus.
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Fig. 1 Seismicity of Norway and surrounding
areas, 1955-1989. From Bungum et al. (1991).



While earthquake risk estimation includes a
consideration of the vulnerability of structures,
the evaluation of earthquake hazard focuses
directly on the probability for a certain earth-
quake related ground motion to occur at a par-
ticular site within a certain time period (Reiter,
1990). Such hazard is now normally estimated
probabilistically, even in plate margin areas
where deterministic methods dominated earlier,
and this is done by integrating contributions to
the ground motion from earthquake sources
over a large area surrounding the site.

The state-of-the-art methodologies for seis-
mic hazard estimation includes an earthquake
source model that defines the occurrence rates
of particular earthquake magnitudes near and
around the site (where some construction may
be planned), this is combined with a wave
attenuation model which defines the ground
motion at a given distance from an earthquake
of a particular magnitude, and allowance is
finally made for possible modifications of the
wave field related to the local soil conditions at
the site.

It is important to note here that the com-
monly used expression ‘wave attenuation
model’ is somewhat misleading as such a
model not only describes the attenuation with
distance but also the absolute level of the seis-
mic excitation from particular size (magnitude)
earthquakes, including the areas near the focus.
The purpose of this study is to demonstrate how
such attenuation models may differ between
intraplate (Norway) and plate margin (Califor-
nia) areas, and to investigate how this influ-
ences the seismic hazard potentials.

2 METHODOLOGY

The foundations for engineering seismic hazard
analysis were established by Cornell (1968),
who recognized the need for seismic design to
be based on a method which properly
accounted for the intrinsic uncertainties associ-
ated with earthquake phenomena.

The model for the occurrence of ground
motions at a specific site in excess of a specified
level is assumed to be that of a Poisson process.
This follows if the occurrence of earthquakes is
a Poisson process, and if the probability that
any one event will produce site ground motions
in excess of a specified level is independent of
the occurrence of other events. The probability
that a ground motion level z is exceeded at a

sitte in wunit time 1is thus expressed as
P(Z>z) = 1—exp[-v(z)], where v (z) isthe
mean number of events per unit time in which Z
exceeds z. With several seismic sources,
described through particular model parameters,
the mean number of events per unit time in
which the ground motion level z is exceeded
can then be expressed specifically, involving
functions that model the inherent stochastic
uncertainty in the frequency and location of
earthquakes, and in the attenuation of the seis-
mic waves. Besides this natural uncertainty,
there is also an element of uncertainty associ-
ated with the variability of model parameters.
This source of uncertainty is accounted for by
regarding these parameters as random vari-
ables, whose discrete values are assigned
weights reflecting their likelihood.

The recurrence rate of earthquakes is
assumed to follow the cumulative Gutenberg-
Richter relation logN (M) = a—bM, where
N(M) is the (annual) number of events with
magnitude greater or equal then M, and a and b
are parameters.

The self-similarity of earthquakes indicated
by this power law appears with few exceptions
to hold quite well within a fairly large magni-
tude range. For the very largest magnitudes
some truncation of this distribution is of course
needed, by introducing the concept of maxi-
mum magnitude.

With the specification of the occurrence of
an event of magnitude M, on a source, at a site-
source distance of R;, the probability of exceed-
ance of ground motion level z needs to be
defined. From studies of strong-motion records,
a log-normal distribution is found to be gener-
ally consistent with the data, with the mean
having a form such as:

InZ = c, +02Mi+c3lnRj+ c4Rj+ln (g) 1)

where Z is the ground motion variable, ¢; to ¢4
are empirically determined constants, and
In(g) is a normally distributed error term with
expectance zero and a standard deviation which
also can be estimated from the recorded data.
Seismic hazard computations now regularly
employs a logic-tree formalism by which
weighted, discrete distributions are input for the
principle seismological and geological vari-
ables. For each terminal node of the logic-tree
branches that stem from source 7, having model
parameters S, (m), a probability weight func-
tion P[S,(m)]is computed, and used to con-



struct the probability distribution of the random
variables v, (z) , the mean number of events per
unit time in which the level z of ground motion
is exceeded, and hence the sum
v(z) = Zv,(z).The probability distribution of
v (z) is close to lognormal for real seismic haz-
ard problems of any complexity (Kulkarni et
al., 1984), and estimates of its mean and vari-
ance allow confidence levels for the exceedance
to be computed efficiently.

3 TEST MODELS

It is well known from numerous studies that the
anelastic attenuation, represented by the ¢, term
in equation (1), is much stronger in the tectoni-
cally younger plate margin areas than in intra-
plate areas. Physically, this term is expressed as
cq = —nf[BO(N17', where Q(f) is a fre-
quency dependent quality factor and B is wave
velocity (Dahle et al., 1991). This difference is
demonstrated very clearly in Fig. 2, where the
fully drawn lines represent an intraplate (Nor-
wegian) PGA attenuation model selected for
this test (Bungum et al., 1992) and the dashed
lines a plate margin (Californian) model
selected for comparison (Joyner and Boore,
1982). The curves in both cases are given for
magnitudes ranging from 4.0 to 7.0, and the
sudden drop in the Californian model at 300-
400 km is caused by the difference in anelastic
attenuation. For a more detailed account of this
difference, see Alsaker et al. (1991).

However, the most striking difference
between the two models, which are derived
using quite different methods, is not in terms of
anelastic attenuation but rather in the way in
which the modelled ground motion scales with
earthquake magnitude, reflecting differences in
the ¢, parameter in equation (1). It is seen that
the curves are not much different at magnitudes
around 6, while the Norwegian model predicts
much lower ground motions around magnitude
4, and greater around magnitude 7.

A similar difference, but much smaller this
time, is seen between the models for 0.2 Hz
pseudo-relative velocity (PSV) in Fig. 3, where
differences in Q (f) now are negligible because
of the much longer wavelengths involved. We
have chosen to conduct the testing for PGA
(normally tied to 40-50 Hz) and 0.2 Hz PSV,
representing the highest and lowest frequency
for which one normally estimates a seismic
loading (equal-probability) spectrum.
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Fig. 2 Seismic wave attenuation models devel-
oped by for Norway (Bungum et al., 1992, fully
drawn lines) as compared to California (Joyner
and Boore, 1982, dotted lines). Ground motion
is peak ground acceleration (PGA) in m/s?, and
the relations are plotted for source-site dis-
tances between 10 and 1000 km, for magni-
tudes of 4, 5, 6 and 7.

In testing the effects of these two models we
have defined a very simple source model as
shown in Fig. 4, consisting of a narrow linear
zone of seismicity along the Mid-Norway con-
tinental margin, with five test sites located at
distances between 100 and 500 km. The source
zone has, for test purposes, been assigned a
seismicity which is somewhat higher that what
we normally should expect in that area.

4 RESULTS

Using the models for seismic sources and wave
attenuation defined above, we find hazard
curves, i.e., expected ground motion vs. annual
exceedance probability, as shown in Fig. 5 for
PGA at 100 km and in Fig. 6 for 500 km. The
PGA results for the whole profile from 100 to
500 km are given in Fig. 7, for annual exceed-
ance probabilities of 107, 103 and 102, respec-
tively, corresponding to return times of about
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Fig.3 Same as for Fig. 2, except that the
ground motion parameter now is pseudo-rela-
tive velocity (PSV), in m/s.

10,000, 1,000 and 100 years. For 0.2 Hz PSV
similar hazard curves are given in Fig. 8 for 100
km, and in Fig. 9 for 500 km.

The hazard curves in Figs. 5-6 and Figs. 8-9
are all for expected ground motion, which
because of the skewness of the distribution cor-
responds to a confidence level of between 55
and 60%, dependent on the details of the mod-
els used. The way the uncertainties are treated
then allows estimates to be evaluated at any
desired confidence level, such as 90%, even
though what is most commonly used is to esti-
mate the expectance plus/minus one standard
deviation. What confidence level and exceed-
ance probability to use are questions which the
owner and/or the regulatory authority have the
responsibility to resolve.

Fig. 5 shows that the two models give about
the same ground motion at 100 km at an
exceedance probability of 10‘2/year, but with
much higher Norwegian values at 10%/year.
These results are reasonable in view of the
wave attenuation differences in Fig. 2, knowing
that the 10"¥/year results are dominated by less
frequent larger (magnitude 5-7) earthquakes,
while the 10"“/year results are influenced prima-
rily by more frequent and smaller (below mag-

nitude 6) earthquakes. This also explains the
relative steepness of the California curve in Fig.
5, reflecting the smaller differences in Fig. 2
between the different magnitudes for the Cali-
fornia model (dashed lines).

At 500 km (Fig. 6) the same effects are seen,
except that the absolute differences between
Norway and California now are much larger,
related to the earlier discussed differences in
anelastic attenuation. The resulting hazard
would normally be negligible when using a
Californian attenuation model, while the Nor-
wegian model still would give a hazard that
could be of importance at that distance for par-
ticularly sensitive structures.

A summary of PGA results for the five dis-
tances between 100 and 500 km (see Fig. 4) are
shown in Fig. 7, for the two attenuation models
and for exceedance probabilities of 104, 103
and 10'2/year (labelled 1, 2 and 3, respectively).
It is seen there, as we saw also in Figs. 5-6, that
the main difference occurs first of all for the
lowest exceedance probabilities (10'4/year),
where the ground motions and also the uncer-
tainties are much larger. The main lesson from
Fig. 7, however, is that the earthquake hazard
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Fig. 4 Earthquake source model used (for test
purposes only) in this analysis, represented by a
narrow linear zone of seismicity along the con-
tinental margin of Mid-Norway, where Fig. 1
reveals a certain concentration of seismicity.
The circles indicate theoretical sites located at
the same latitude at distances from 100 to 500
km from the center of the source zone.



