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INTRODUCTION

These notes are being printed in exactly the form in which
they were first written and distributed: as class notes, supplementing
and working out my oral lectures. As such, they are far from polished and
ask a lot of the reader. In the words of the ex-editor of a well-known
journal they are written in a style "seldom seen except in personal letters
between close friends." Be that as it may, my hope is that a well-inten-
tioned reader will still be able to penetrate these notes and learn some-
thing of the besutiful geometry on an algebraic surface.

It was expected, when these notes were written, that the
reader had the following background: he had taken a graduate course in
commutative algebra, he had studied some Algebraic Geometry and, in partic-
ular, he had some acquaintance with the theory of curves, and the theory of
schemes, and of their cohamology (e.g., Dieudonne’s Maryland and Montreal
Lecture Notes). Nonetheless, both to fix ideas, and to prove some special-
{zed results that are needed later, Lectures 3-10 are devoted to a quick
and rather breezy digression into the general theory of schemes. Lecture 11
sunmarizes what we need from the theory of curves. I apologlize to any
reader who, hoping that he would find here in these 60 odd pages an easy
and concise introduction to schemes, instead became hopelessly lost in a
maze of unproven assertions and undeveloped suggestions. From Lecture 12
on, we have proven everything that we need.

The goal of these lectures is a complete clarification of one
"theorem" on Algebraic surfaces: the so-called completeness of the charac-
teristic linear system of a good complete algebraic system of curves, on a
surface F. If the characteristic is 0, this theorem was first proven by
Poincaré (cf. References) in 1910 by analytic methods. Until about 1960,
no algebraic proof of this purely algebraic theorem was known.* In 1955,
Igusa had shown that the theorem, as stated, was false in characteristic p
thus making the theorem appear even more analytic in nature. But about
1960, a truly amazing development occurred: 1in the course of working out
the master plan that he had laid out for Algebraic Geometry—incorporating
some of the key ideas of Kodaira’s and Spencer’s deformation theory-Grothen-
dieck had occasion to write out some of the Corollaries of his theory (cf.
his Bourbakl exposé 221, pp. 23-24). Putting his results together with a

Although an endless and depressing controversy obscured this fact.
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viii LECTURES ON CURVES ON AN ALGEBRAIC SURFACE

result of Cartier—that group schemes in characteristic 0O are reduced—one
finds that this old problem has been completely solved: a) a purely alge-
braic proof is available in characteristic O, b) all the machinery is
ready at hand for obtaining, in characteristic p, necessary and sufficient
conditions for the valldity of the theorem. What was the key, the essential
point which the Italians had overlooked? There is no doubt at all that it
is the systematic use of nilpotent elements: in particular, a systematic
analysis of all families of curves on a surface over a parameter space with
only one point, but with non-trivial nilpotent structure sheaf. The Ital-
lans had, in a sense, done this, but only when the ring of functions on the
base was Study’s ring of dual numbers k[e]/(eg). This is the same as look-
ing at first-order deformations of a curve. But they ignored higher order
nilpotents and higher order deformations.

The outline of these lectures is as follows—lectures 1 and 2
give an intuitive introduction to the problem and present in outline 2 an-
alytic proofs. Lectures 3 through 10 recall basic notions about schemes.
Lectures 11 through 21 deal with basic questions on the theory of surfaces.
In particular, they give a construction of universal families of curves on
a surface—the so-called Hilbert scheme; and of universal families of divisor
classes on a surface—the so-called Picard scheme. Lectures 22 through 27
deal with the application of the whole theory to the main problem: these
include a long lecture by G. Bergman giving a self-contained description of
the Witt ring schemes.

I would like to call attention to several generalizations and
applications of our results which were omitted so as to get directly to the
main result.

a) The method by which we have constructed the universal
famlly of curves on a surface F gives without any change a construction of
the universal flat family of subschemes of any scheme X, projective over a
noetherian 8, i.e., of the Hilbert scheme. In particular, the explicit
estimates obtained in ILecture 14 enable ont to carry through this construc-
tion—which 1s Grothendieck’s original construction—without the indirect ar-
guments using the concept of "limited families" which he used (cf. his
"Fondements") .

b) The method by which we have constructed the Picard scheme
of a surface F generalizes so as to construct the Picard scheme of any
scheme X, projective and flat over a noetherian S, whose geometric fibres
over 3 are reduced and connected and such that the components of its ac-
tual fibres over 3 are absolutely irreducible. This construction is re-
lated to the one I outlined at the International Congress of 1962, and ties
up with the methods used in Chapters 3 and 7 of my book Geometric Invariant

Theory.




INTRODUCTION ix

c) One can use the results of Lecture 18 to give a very easy
proof of the Riemann Hypothesis for curves over finite fields. This is the
proof of Mattuck-Tate (cf. References). If you have read through Lecture 18,
and know the formulation of the Riemann Hypothesis vlia the Frobenius mor-
phism, you can read their paper without difficulty and you should.

Cambridge
March, 1966
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LECTURE 1

RAW MATERTAL ON CURVES ON SURFACES, AND
THE PROBLEMS SUGGESTED

We shall be concerned entirely with algebraic geometry over a fixed
algebraically closed field k (of arbitrary characteristic). Our chief
purpose is to study the geametry on E_non-singular algebraic surface F,
projective over k, and, in partiéalar, the families of curves C on F.

By a curve we mean either a finite sum of irreducible, 1-dimension-
gl subvarieties of F, with positive multiplicity: z nCy, or a sheaf of
principal ideals on F. [These are equivalent concepts—for precise defini-
tions, cf. Lecture 9.] '

Example 1: F = p,. Then, as is well-known, every curve C on P, 1s
defined by a homogeneous form F(x,, X, xa). In particular, one can at-
tach to C 1its degree d, i.e., the degree of F, and the family of all
curves of degree d 1s parametrized by the set of all F of degree d,
up to scalars: 1i.e., by a projective space of dimension

(d + 1)(4 + 2) _ 1
2

Example 2: F = P, X P, (i.e., a quadric in P3). Then every curve C
on F 1s defined by & bi-homogeneous form

F(xo; X435 Yoo Y1)
with two degrees d and e. d and e can be interpreted as the degrees
of the coverings

Pys Pyt C—P,
given by the two projections of P, X P, onto P,. Again, for every d
and e, there is a single family of curves parametrized by a projective
space, this time of dimension;

(d+ 1)(e+ 1) -1

The phenomenon of the last two examples can be generalized by the

concept of a linear system. If f 1s an algebraic function on F, let,
as usual, (f) stand for the formal sum:

1



2 LECTURES ON CURVES ON AN ALGEBRAIC SURFACE

ZS ordE(f) - E

all 1-dimensional
irreducible subvarieties
E

where ordE(f) is the order of the zero or pole of f at E. Then as-
sociated to any curve C one has the vector space of functions with poles
only at C:

2(C) = (£] (£f) + C > 0)

(Here I nyE; > 0 means all ny > 0.) If f,,...,f, are a basis of
£(C), one then cen define the following family of curves, which contains
C:

Cq = (Zoyfy) + C
S8ince C, only depends on the ratios of the o;, this 1s an irreducible

family of curves parametrized by a projective space of dimension:
dim £(C) -1

Linear systems are the simplest families of curves on a surface F and
the only type occurring in Examples 1 and 2.

Definition: Two curves C‘ and 02 are linearly equivalent if equiva-
lently:

1) 3 a function f on F such that (f) = €, - Cp, or

11) c¢,, C, are in the same linear system.

We write C, = 02 for this concept.

Example 3: Let & be an elliptic curve (over k), and let F = P, x&.
Again, given a curve C on F, we can assign to C two degrees d and e,
as the orders of the coverings

C—pP;; C—§&
obtained by projecting. Both d > 0 and e > 0 and either 4 > 0 or
e > 0.

Case 1) d = 0: Then C is of the form X ial Py x &, and all these C
form a single e-dimensional linear system.

Case 11) d > 0: The set of all C of type (d, e) forms an irreducible
d(e + 1)-dimensional family of curves, but it is not a linear system.
Rather 1t 1s fibred by d(e + 1)-1-dimensional linear subfamilies.

Definition: Two curves C1, 02 are algebraically equivalent if C1 and
C, are both contained in one family of curves parametrized by a connected
variety.

With this terminology, we can say that on P, x§, algebraic and
linear equivalence differ. Another point to notice is that the dimension
formula in Case 11) does not specialize to the dimensional formula in
Case 1) when d = 0: this is the phenamenon of superabundance.
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Example 4: Let 7 be a "generic" curve of genus 2, i.e., a double cover-
ing of P, branched at six points with independent transcendental coordi-
nates over the prime field (if char. # 2). ILet F be the jacobian of
y. Recall that

(1) F 1is a non-singular algebraic surface,

(2) F 1s also an algebraic group,

(3) 1in a natural way, 7y 1tself is a curve on F.

It turns out that every curve C on F 1s algebralcally equivalent to a
curve dy, for a sultable positive integer d. Moreover, C 1is linearly
equivalent to a suitable translation of dy (4in the sense of the given
group structure). The set of all curves algebraically equivalent to dy
is an irreducible family of dimension a® . 1, and its linear sub-families
have dimension d° - 1. In fact, one can define a map:
[ all curves alg. equivalent to dy }
-

linear equivalence

where a + image of dy wunder translation by a. In fact, this map
factors as follows:

. mult. by d 5 7 bijection 5 [ curves alg. equivalent to dy ]
linear equivalence

This indicates a general point: the set [algebraic equivalence modulo
linear equivalence], tends to be independent of the family of curves con-
sidered.

One should caontrast this surface F with its "Kummer" counterpart
K: this is defined as the double covering of P, branched in a generic
sextic curve (char. # 2). Here all curves are linearly equivalent to
d - h, where h 1is the inverse image of a line in P,, and the dimen-
slon of this family is d2 + 1 (as above). It is similar to F also in
that (a) (72) =2 on F, (h2) =2 on K [(Da) denotes self-intersec-
tion—cf. Lecture 12], and (b) both F and K admit double differentials
with neither zeros nor poles. This K 1is of the same type as the quartic
surfaces in Pjy.

In fact, we have touched briefly on every class of algebraic sur-
faces admitting a double differential with no zeros (i.e., an anti-canoni-
cal linear system): for reasons stemming from Serre duality, the geometry
on these surfaces 1s particularly simple. To bring out some further fea-
tures of surfaces, we will discuss another rational surface:

Example 5: Iet F be the surface obtained by blowing up two points Py,
P, 1in P, [or by blowing up one point in P, xP,]. Let E, and E, be
the rational curves which are the inverse images of P, and P, on F.
Iet £ Dbe the line in P, from P, to P,, and let D be the curve
on F which is the closure of the inverse image of { - P, - P,. Then

to every curve C on F, one can attach three chesracters k k,, and ¢,

12 %o»



b LECTURES ON CURVES ON AN ALGEBRAIC SURFACE

where k,, k, and f are non-negative and not all zero; and the set of
all curves with characters k,, k,, £ form the single linear system con-

taining
KE, + k2E2 + D

But unlike the situation on P, x P,, not all these systems are "good"
systems of curves.

Case 1) If £ >k, &>k, and k, + k, > £, then none of the three
curves E,, E;, or D 1s a component of all curves in the linear system
containing K,E, + kE, + D, and this linear system has the predictable
dimension:

(2+1) (£42) (l—k’)(!-kiﬂ) (£-k;) (L-ky41)

(* -z 3 = !

Case 11) If £<k,, <k, or k, + k, < 2, then one of the three
curves E,, E;, or D 1s a component of all the curves in question, and,
in general, this femily 1s also superabundant, i.e., its dimension is
bigger than that predicted by (*).

Another way of telling the "good" from the "bad" systems of curves
is this:

the system of curves
linearly equivalent

to KWE; + kB, + £D !>k1

i1s the family of hyper- o> > k2
plane sections of F k > 8
for some embedding of F 1+ K

in Py

Here the condition on the left defines the notion: k,E1 + k,é,E2 +
fD 1is very ample.

With all this data before us, what questions emerge as the natural
ones to pose in studying the curves on a general surface F ? I think
four basic lines of study are suggested:

(1) the problem of Riemann-Roch: Given a curve C,
to determine the dimension of the linear system of curves
containing C. We shall see below that this is equivalent
to the problem of computing
dim H°( @)

where ¢ 1s a sheaf on F, locally isomorphic to the sheaf
op of regular functions.

(11) the problem of Picard: To describe the family of
all algebraic deformations of a curve C modulo its linear
subfamilies. It turns out that this quotient is independent
of C, if C 1s good, and this quotient leads to the Picard
scheme and/or variety.
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(111) Good vs. Bad curves: What makes C good and bad?

One can ask when is C very ample, when 1s C super-
abundant, what are the really bad "exceptional" C which

play the role of E,;, E, and D 1in Example 5 above?
Particularly significant is the question of the "regularity

of the adjoint" (= "Kodaira’s vanishing theorem") cf. Lecture 1k.

(iv) the components of the set of all curves C on F:
Especially, what finiteness statements can be made? Ex-
amples are the theorem of the base of Neron and Severi, and
the theorem that only a finite number of components represent

curves of any given degree.






IECTURE 2

THE FUNDAMENTAL EXISTENCE PROBLEM AND

TWO ANALYTIC PROOFS

We shall analyze problem 1i) more closely. The real nature of the
problem becomes clearer when one passes from curves to divisors. By a
divisor on F we mean either a finite sum of irreducible, 1-dimensional
subvarieties, with (positive or negative) multiplicity: > nCy, ny €2,
or a sheaf of fractional ideals, i.e., a coherent subsheaf of the constant
sheaf K:

K(U) = function field k(F), all U

(cf. Lecture 9 for precise definitions). The set of all divisors on F
forms a group, which we denote G(F). Put:

Ga(F) = subgroup of divisors of the form C, - C,, where
C1, C2 are algebraically equivalent curves,
Gy (F) = subgroup of divisors of the form C, - C,, where

€, = C,, or, equivalently, the subgroup of divisors
of form (f), £ € k(F).

Now if C 1s any curve on F, and (C | o € S} 1s the family of all
curves algebraically equivalent to C = Co, one can define a map:
modulo linear

S/ subfamilies » Gy (F) /Gy (F)
by mapping o to the divisor Ca - Co' One checks immediately that it
is always injective, and it can be shown that for sufficiently "good"
(7!) curves, it 1s surjective. For this reason, problem (11i) becomes
independent of C, 1in most cases, and asks simply-what is the structure
and dimension of the group Ga(F)/Gl(F) invariantly attached to F ?

Agaln without proofs, we would like to mention the cohomologlcal
interpretation of these groups:
Let o* = sheaf of units in the structure sheaf o
K* = sheaf of units in K.

Then:
O-’_C_)_*-’K*_’K*/O*-’O

leads to:



