Scientific Computing

Dianne P. 0’Leary

Scientific Computing

WITH CASE STUDIES

Dianne P, 0’Leary

University of Maryland
College Park, Maryland

Copyright © 2009 by the Society for Industrial and Applied Mathematics and the Mathematical
Programming Society

10987654321

All rights reserved. Printed in the United States of America. No part of this book may be repro-
duced, stored, or transmitted in any manner without the written permission of the publisher. For
information, write to the Society for Industrial and Applied Mathematics, 3600 Market Street,
6th Floor, Philadelphia, PA, 19104-2688 USA.

Trademarked names may be used in this book without the inclusion of a trademark symbol.
These names are used in an editorial context only; no infringement of trademark is intended.

MATLAB is a registered trademark of The MathWorks, Inc. For MATLAB product information,
please contact The MathWorks, Inc., 3 Apple Hill Drive, Natick, MA 01760-2098 USA, 508-647-
7000, Fax; 508-647-7101, info@mathworks.com, www.mathworks.com.

Mathematica is a registered trademark of Wolfram Research, Inc.
Maple is a registered trademark of Waterloo Maple, Inc.

The images in Figure 1.1 were taken from http://nightglow.gsfc.nasa.gov/ericJournal_ﬁles/
sydney_bridge.jpg and http://www.cpsc.gov/cpscpub/prere|/prhtml07/07267a.jpg

Figure 26.1 (http://www.myrmecos.net/insects/Tribolium1.html) is owned by Alex Wild.

Figures 11.1 and 11.2 were taken by Timothy O’Leary.

Library of Congress Cataloging-in-Publication Data

O'Leary, Dianne P.

Scientific computing with case studies / Dianne P. O'Leary.

p. cm.

Includes bibliographical references and index.

ISBN 978-0-898716-66-5

1. Mathematical models--Data processing--Case studies. . Title.

QA401.044 2008

510.285--dc22

2008031493

Sla"‘- is a registered trademark.

To Gene H. Golub, my first research mentor.
To my parents, Raymond and Anne Prost.
To ty husband, Timothy.

To my children, Theresa, Thomas, and Brendan.

With love.

Preface

A master carpenter does not need to know how her hammer was designed or what
Newton’s laws say about the force that the hammer applies. But she does need to know
how to use the hammer, when to use a ball-peen hammer instead, and what to do when
things go wrong, for example, when a nail bends as it is driven.

We take the same viewpoint in this book. Although there are fascinating stories to
tell in the details of how basic numerical algorithms are designed and how they operate, we
view them as tools in our virtual toolbox, discussing the innards just enough to be able to
master their uses. Instead we focus on how to choose the most appropriate algorithm, how
to make use of it, how to evaluate the results, and what to do when things go wrong.

This viewpoint frees us to explore many diverse applications of our tools, and through
such case studies we practice the analysis and experimentation that are the mainstays of
computational science.

The reader should have background knowledge equivalent to a first course in scien-
tific computing or numerical analysis. Excellent textbooks for learning this information
include those by Michael Heath [71], Cleve Moler [108], and Charles Van Loan [148].

Examples and illustrations use the MATLAB® programming language. Standard
MATLAB functions provide us with our basic numerical algorithms, and the graphics in-
terface is quite useful. For some problems, we make use of some of the MATLAB tool-
boxes, in particular, the Optimization Toolbox. If you do not have access to MATLAB, the
basic numerical algorithms can also be obtained from NETLIB and other sources noted in
the text. Sample programs for each case study are available at the website

www.cs.umd.edu/users/oleary/SCCS/

No single book can give a computational scientist all of the background needed fora
career. In fact, computational science is primarily a collaborative enterprise, since it is rare
that a single individual has all of the computational and scientific background necessary
to complete a project. My hope is that this particular slice of knowledge will prove use-
ful in your work and will lead you to further study, exciting applications, and productive
collaborations.

I'm grateful to my many mentors, collaborators, and students, who through their
probing questions forced me to seek deeper understanding and clearer explanations. May
you too be blessed with good colleagues.

xiii

Xiv Preface

Notes to Students

This book is written as a textbook for a second course in scientific computing, so it assumes
that you have had a semester (or equivalent) of background using a standard textbook such
as that by Heath [71], Moler [108], Van Loan [148], or equivalent. The Basics box at the
beginning of each unit tells you what part of this material you might want to review in
preparation for the unit. The Mastery box is a checklist of points to master in working
through the unit.

The basic premise behind this book is that people learn by doing. Therefore, the
book is best read with a pencil, paper, and MATLAB window close at hand. Challenges
are sprinkled throughout the text, and they are meant be worked as they are encountered,
or at least before the end of the chapter. Answers are provided for most challenges at

www.cs.umd.edu/users/oleary/SCCS/

There you can see examples of how someone else worked through the challenges. Mastery
will be best if the answers are used to verify and refine your own approach to the problem.
Merely reading the answer, though tempting, is (unfortunately) no substitute for trying to
work the challenge on your own.

Pointers give important information and references to additional literature and soft-
ware. I hope the content of this book leads you to want to learn more about scientific
computing.

Notes to Instructors

The material in this book has been used for a semester and a half in a graduate level course
in the applied mathematics program at the University of Maryland.

e I lecture from the introductory material in each unit, with material from the Case
Studies used to occasionally provide extra information and motivation. Students can
become quite passionate about some of the Case Studies, especially the more visual
ones such as the image deblurring problem (Chapter 6), the data clustering problem
(Chapter 11), and the epidemiology models (Chapter 19 and 21).

e For quizzes and exams, I derive problems from the Mastery points at the beginning
of each unit.

e If possible, I like to allow “laboratory time” in class for students to work on some of
the Challenges. The opportunity to see how other people solve problems is helpful
even to the best students. This is especially true if, as at the University of Maryland,
the students in this course come from backgrounds in mathematics, computer sci-
ence, and engineering. This provides a remarkably diverse set of viewpoints on the
material and enriches the dialog.

e Many of the Case Studies were originally homeworks.

e For a term project, I often ask students to develop a Case Study, using the tools
presented in the course to solve a problem in their application area. Such projects can
then be adapted for use in later terms. My students Nargess Memarsadeghi, David
A. Schug, and Yalin E. Sagduyu developed particularly interesting case studies, and
adapted versions of them are included here.

Preface XV

e There are not many unsolved exercises in this book. In the age of the Internet, there
are very few textbook problems for which solutions cannot be found somewhere,
and providing solutions here at least puts all students on equal footing. Some un-
solved exercises and Case Studies are available on the book’s website, and I would
be grateful for your contribution of additional ones to post there.

There is a great deal of flexibility in choice and ordering of units, except that the
optimization unit should be covered before nonlinear equations, and dense matrix compu-
tations should be discussed before optimization. The first six units form the syllabus for
a one semester course at Maryland, while the final one is combined with a textbook in
numerical solution of partial differential equations for the second semester.

Acknowledgments

I am grateful for the help of many, including the following:

e Computing in Science and Engineering, published by the American Institute of Physics
and the IEEE Computer Society, for permission to include chapters derived from the
case studies published there: Chapters
1 (Vol. 8, No. 5, 2006, pp. 86-90),

3 (Vol. 8, No. 3, 2006, pp. 86-89),
4 (Vol. 7, No. 6, 2006, pp. 78-80),
6 (Vol. 5, No. 3, 2003, pp. 82-85),
7 (Vol. 8, No. 2, 2006, pp. 66-70),
8 (Vol. 5, No. 6, 2003, pp. 60-63),
11 (Vol. 5, No. 5, 2003, pp. 54-57),

12 (Vol. 6, No. 5, 2004; pp. 60-62),
13 (Vol. 6, No. 3, 2004, pp. 66-69),
14 (Vol. 7, No. 1, 2005, pp. 56-59),
15 (Vol. 7, No. 2, 2005, pp. 60-62),
17 (Vol. 9, No. 1, 2007, pp. 72-76),
18 (Vol. 6, No. 6, 2004; pp. 58-62),
19 (Vol. 6, No. 1, 2004, pp. 68-70),
21 (Vol. 6, No. 2, 2004, pp. 50-53),
22 (Vol. 5, No. 4, 2003, pp. 68-71),
23 (Vol. 7, No. 3, 2005, pp. 20-23),
26 (Vol. 9, No. 2, 2007, pp. 96-99),
27 (Vol. 7, No. 5, 2005, pp. 62-67),
28 (Vol. 8, No. 4, 2006, pp. 74-78),
29 (Vol. 6, No. 4, 2004, pp. 74-76),
30 (Vol. 7, No. 6, 2005, pp. 74-77),
31 (Vol. 7, No. 4, 2005, pp. 68-70),
32 (Vol. 8, No. 5, 2006, pp. 86-90).

e Jennifer Stout, Lead Editor of Computing in Science and Engineering, who patiently
edited the case studies.

e Mei Huang, for her work on Chapter 18.

XVi Preface

e Jin Hyuk Jung, who as a teaching assistant wrote supplementary lecture notes from
which some of the figures were taken, particularly those in Chapters 5, 9, and 24.

e Nargess Memarsadeghi, David Schug, and Yalin Sagduyu, whose term projects were
so interesting that they led to case studies included here.

e Staff in the Technical Support Department at The MathWorks, for discussions about
the sources of overhead in MATLAB interpreted and compiled instructions.

e James G. Nagy, a master teacher, who inspired the case studies and coauthored the
first one.

e The National Science Foundation and the National Institute of Standards and Tech-
nology, for supporting my research into many of the problems discussed in the case
studies.

e Timothy O’Leary for the photo of Charlie in Chapter 11.

e Students in the University of Maryland courses Scientific Computing I and 1I: (espe-
cially Samuel Lamphier) for their patience and debugging as the notes were devel-
oped.

o G. W. Stewart, for his example of clearly written textbooks and for the privilege of
being his colleague at Maryland.

¢ Howard Elman, David Gilsinn, Vadim Kavalerov, Tamara Kolda, Samuel Lamphier,
K.J.R. Liu, Brendan O’Leary, Bert Rust, Simon P. Schurr, Elisa Sotelino, G. W.
Stewart, and Layne T. Watson for helpful comments.

The images in Figure 1.1 were taken from http://nightglow.gsfc.nasa.
gov/eric_journal_files/sydney bridge.jpgandhttp: //www. cpsc.gov/
cpscpub/prerel/prhtml07/07267a. jpg,and thatin Figure 26.1 (http: / /www.
myrmecos.net/insects/Triboliuml.html)is owned by Alex Wild.

Preface

Contents

I Preliminaries: Mathematical Modeling, Errors, Hardware, and Software

1 Errors and Arithmetic
1.1 Sourcesof Error
1.2 Computational Science and Scientific Computing
1.3 Computer Arithmetic
1.4 How ErrorsPropagate
1.5 Mini Case Study: Avoiding Catastrophic Cancellation
1.6 How Errors Are Measured
1.7 Conditioning and Stability

2 Sensitivity Analysis: When a Little Means a Lot

2.1
22
23
24

Sensitivity Is Measured by Derivatives.
Condition Numbers Give Bounds on Sensitivity.
Monte Carlo Experiments Can Estimate Sensitivity.
Confidence Intervals Give Insight into Sensitivity

3 Computer Memory and Arithmetic:
A Look Under the Hood

3.1 AMotivatingExample
3.2 Memory Management
3.3 Determining Hardware Parameters
3.4 Speed of Computer Arithmetic
4 Design of Computer Programs:

Writing Your Legacy

4.1 Documentation
42 SoftwareDesign
4.3 Validationand Debugging
44 Efficiency

vii

xiii

23
23
24
27
28

31
31
32
34
36

39

viii

Contents

II Dense Matrix Computations

5 Matrix Factorizations

5.1 Basic Tools for Matrix Manipulation: The BLAS
5.2 The LU and Cholesky Decompositions
5.3 The QR Decomposition
5.3.1 QR Decomposition by Givens Rotations
5.3.2 QR by Gram-Schmidt Orthogonalization
5.3.3 Computing and Using the QR Decomposition.
5.3.4 Mini Case Study: Least Squares Data Fitting
5.4 The Rank-Revealing QR Decomposition (RR-QR)
5.5 Eigendecomposition.
5.5.1 Computing the Eigendecomposition
5.5.2 Mini Case Study: Stability Analysis of a Linear Control System
5.5.3 Other Uses for Eigendecompositions
5.6 The Singular Value Decomposition(SVD)
5.6.1 Computing and Usingthe SVD

5.6.2 Mini Case Study: Solving IlI-Conditioned and Rank-Deficient
Least Squares Problems
5.7 Some Matrix Tasksto Avoid
5.8 Summary

6 Case Study: Image Deblurring: I Can See Clearly Now
(coauthored by James G. Nagy)

7 Case Study: Updating and Downdating Matrix Factorizations:
A Change in Plans

8 Case Study: The Direction-of-Arrival Problem

III Optimization and Data Fitting

9 Numerical Methods for Unconstrained Optimization

9.1

9.2

93
94
9.5

9.6

Fundamentals for Unconstrained Optimization
9.1.1 How Do We Recognize a Solution?
9.1.2 Geometric Conditions for Optimality
9.1.3 The Basic Minimization Algorithm
The Model Method: Newton
9.2.1 How Well Does Newton’s Method Work?
9.2.2 Making Newton’s Method Safe: Modified Newton Methods . .
Descent Directions and Backtracking Linesearches
TrustRECIONS w oo 6 5 5 ¢ s s s v mm s @5+ 5 8 68 85 mes s
Alternatives to Newton’s Method
9.5.1 Methods that Require Only First Derivatives
9.5.2 Low-Storage First-Derivative Methods
9.5.3 Methods that Require No Derivatives
SUMMAE wspooopss :: s s asmamens « s 5 v 8 mmmsmmn

74
76
78

81

87

Contents iX
10 Numerical Methods for Constrained Optimization 135
10.1 Fundamentals for Constrained Optimization 135
10.1.1 Optimality Conditions for Linear Constraints 136
10.1.2 Optimality Conditions for the GeneralCase 138
10.2 Solving Problems with Bound Constraints 139
10.3 Solving Problems with Linear Equality Constraints: Feasible Directions 140
10.4 Barrier and Penalty Methods for General Constraints 141
10.5 Interior-PointMethods 144
106 SUMMATY : : ¢ ¢ s s s mumwmp s s 5§ 5 s mes@aa s 3§ 58 3 147
11 Case Study: Classified Information: 149
The Data Clustering Problem
(coauthored by Nargess Memarsadeghi)
12 Case Study: Achieving a Common Viewpoint: 157
Yaw, Pitch, and Roll
(coauthored by David A. Schug)
13 Case Study: Fitting Exponentials: An Interest in Rates 163
14 Case Study: Blind Deconvolution: Errors, Errors Everywhere 169
15 Case Study: Blind Deconvolution: A Matter of Norm 175
IV Monte Carlo Computations 183
16 Monte Carlo Principles 187
16.1 Random Numbers and Their Generation 188
16.2 Properties of Probability Distributions 190
16.3 The WorldIs Normal 191
16.4 Pseudorandom Numbers and Their Generation 192
16.5 Mini Case Study: Testing Random Numbers 193
17 Case Study: Monte Carlo Minimization and Counting: 195
One, Two, Too Many
(coauthored by Isabel Beichl and Francis Sullivan)
18 Case Study: Multidimensional Integration: 203
Partition and Conquer
19 Case Study: Models of Infection: Person to Person 213
V Ordinary Differential Equations 221
20 Solution of Ordinary Differential Equations 225
20.1 Initial Value Problems for Ordinary Differential Equations 226
20.1.1 StandardForm 226
20.1.2 Solution Families and Stability 228

X Contents
20.2 Methods for Solving IVPSforODES 232
20.2.1 Euler’s Method, Stability,and Error 232
20.2.2 Predictor-CorrectorMethods 237
20.2.3 The AdamsFamily 239
20.2.4 Some Ingredients in Building a Practical ODE Solver 240
20.2.5 Solving Stiff Problems00 0oL 243
20.2.6 An Alternative to Adams Formulas: Runge—Kutta 243
20.3 Hamiltonian Systems Lo 245
20.4 Differential-Algebraic Equations 247
20.4.1 SomeBasics oo 248
20.4.2 Numerical Methods forDAEs 249
20.5 Boundary Value Problems forODEs 250
20.5.1 ShootingMethodso 253
20.5.2 Finite Difference Methods 254
20,6 SUMMATY . s s m s s we 0t ¢ s ¢ s su B EBa s 8 53 § 8 2885 3 256
21 Case Study: More Models of Infection: It’s Epidemic 259
22 Case Study: Robot Control: Swinging Like a Pendulum 265
(coauthored by Yalin E. Sagduyu)
23 Case Study: Finite Differences and Finite Elements 273
Getting to Know You
VI Nonlinear Equations and Continuation Methods 281
24 Nonlinear Systems 285
24.1 TheProblem 285
24.2 Nonlinear Least Squares Problems 287
243 Newton-likeMethodso oL 288
24.3.1 Newton’s Method for Nonlinear Equations 288
24.3.2 Alternatives to Newton’s Method 289
244 ContinuationMethods L L 291
24.4.1 The Theory behind Continuation Methods 293
24.4.2 Following the SolutionPath 294
25 Case Study: Variable-Geometry Trusses 297
26 Case Study: Beetles, Cannibalism, and Chaos 301
VII Sparse Matrix Computations,
with Application to Partial Differential Equations 307
27 Solving Sparse Linear Systems 311
Taking the Direct Approach
27.1 Storing and Factoring Sparse Matrices 311
27.2 What Matrix Patterns Preserve Sparsity? 313
27.3 Representing Sparsity Structure oL L oL oL 314

Contents Xi

27.4 Some Reordering Strategies for Sparse Symmetric Matrices 314
27.5 Reordering Strategies for Nonsymmetric Matrices 321
28 Iterative Methods for Linear Systems 323
28.1 Stationary Iterative Methods (SIMs) 324
28.2 From SiMs to Krylov Subspace Methods 326
28.3 Preconditioning CG, 328
28.4 Krylov Methods for Symmetric Indefinite Matrices and for Normal
EQUAtIONS & w5 5 5 5 505 5 2 5 5 5 ¢ 60 6 b mm s o s 0 o om0 330
28.5 Krylov Methods for Nonsymmetric Matrices 331
28.6 Computing Eigendecompositions and SVDs with Krylov Methods . . . 333
29 Case Study: Elastoplastic Torsion: Twist and Stress 335
30 Case Study: Fast Solvers and Sylvester Equations 341
Both Sides Now
31 Case Study: Eigenvalues: Valuable Principles 347
32 Multigrid Methods: Managing Massive Meshes 353
Bibliography 361

Index 373

Unit |

Preliminaries:
Mathematical Modeling, Errors,
Hardware and Software

Numerical
Analysis

\ athematica
Software

Problem Data

vl

The topic of this book is efficient and accurate computation with mathematical mod-
els. In this unit, we discuss the basic facts that we need to know about error, software, and
computers.

We begin our study with some basics. First in Chapter 1 we consider how errors are
introduced in scientific computing and how to measure them. We apply these principles in
Chapter 2, studying how small changes in our data can affect our answers. In Chapter 3,
we see how computer memory is organized and how that impacts the efficiency of our

algorithms. Then in Chapter 4, we study the principles behind writing and documenting
our algorithms.

BASICS: To understand this unit, the following background is helpful:
e MATLAB programming [78].

e Gauss elimination; see a linear algebra textbook or a beginning book on numerical
analysis or scientific computing [148].

MASTERY: After you have worked through this unit, you should be able to do the follow-
ing:

o Identify the sources of error in scientific computing.

e Represent an integer in a fixed-point number system and a real number in a floating-
point number system.

e Use the parameter €, (machine epsilon) to determine the error introduced in floating-
point representation.

e Measure relative and absolute errors and determine how they are magnified during
computation.

e Write algorithms that compute values such as the sum of a series, avoiding unneces-
sary inaccuracies.

e Determine ways to avoid catastrophic cancellation in designing algorithms.

e Use forward and backward error analysis to assess the quality of a computed solution
to a problem.

e Determine whether a problem is well-conditioned or ill-conditioned.
e Discuss the importance of stability in an algorithm.

e Measure the sensitivity of a problem using derivatives, condition numbers, Monte
Carlo experiments, and confidence intervals.

e Distinguish between a row-oriented matrix algorithm and a column-oriented matrix
algorithm, and be able to write them for simple tasks.

e Explain how matrices are stored in main memory and moved to cache, and perform
counts of page moves.

e Count the number of multiplications in a given MATLAB algorithm.
e Explain what the BLAS are and why they are useful.

e Document computer programs effectively.

e Understand the principles of modular design.

e Write a program to validate a function that you have written.

