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Preface

A master carpenter does not need to know how her hammer was designed or what
Newton’s laws say about the force that the hammer applies. But she does need to know
how to use the hammer, when to use a ball-peen hammer instead, and what to do when
things go wrong, for example, when a nail bends as it is driven.

We take the same viewpoint in this book. Although there are fascinating stories to
tell in the details of how basic numerical algorithms are designed and how they operate, we
view them as tools in our virtual toolbox, discussing the innards just enough to be able to
master their uses. Instead we focus on how to choose the most appropriate algorithm, how
to make use of it, how to evaluate the results, and what to do when things go wrong.

This viewpoint frees us to explore many diverse applications of our tools, and through
such case studies we practice the analysis and experimentation that are the mainstays of
computational science.

The reader should have background knowledge equivalent to a first course in scien-
tific computing or numerical analysis. Excellent textbooks for learning this information
include those by Michael Heath [71], Cleve Moler [108], and Charles Van Loan [148].

Examples and illustrations use the MATLAB® programming language. Standard
MATLAB functions provide us with our basic numerical algorithms, and the graphics in-
terface is quite useful. For some problems, we make use of some of the MATLAB tool-
boxes, in particular, the Optimization Toolbox. If you do not have access to MATLAB, the
basic numerical algorithms can also be obtained from NETLIB and other sources noted in
the text. Sample programs for each case study are available at the website

www.cs.umd.edu/users/oleary/SCCS/

No single book can give a computational scientist all of the background needed fora
career. In fact, computational science is primarily a collaborative enterprise, since it is rare
that a single individual has all of the computational and scientific background necessary
to complete a project. My hope is that this particular slice of knowledge will prove use-
ful in your work and will lead you to further study, exciting applications, and productive
collaborations.

I'm grateful to my many mentors, collaborators, and students, who through their
probing questions forced me to seek deeper understanding and clearer explanations. May
you too be blessed with good colleagues.

xiii
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Notes to Students

This book is written as a textbook for a second course in scientific computing, so it assumes
that you have had a semester (or equivalent) of background using a standard textbook such
as that by Heath [71], Moler [108], Van Loan [148], or equivalent. The Basics box at the
beginning of each unit tells you what part of this material you might want to review in
preparation for the unit. The Mastery box is a checklist of points to master in working
through the unit.

The basic premise behind this book is that people learn by doing. Therefore, the
book is best read with a pencil, paper, and MATLAB window close at hand. Challenges
are sprinkled throughout the text, and they are meant be worked as they are encountered,
or at least before the end of the chapter. Answers are provided for most challenges at

www.cs.umd.edu/users/oleary/SCCS/

There you can see examples of how someone else worked through the challenges. Mastery
will be best if the answers are used to verify and refine your own approach to the problem.
Merely reading the answer, though tempting, is (unfortunately) no substitute for trying to
work the challenge on your own.

Pointers give important information and references to additional literature and soft-
ware. I hope the content of this book leads you to want to learn more about scientific
computing.

Notes to Instructors

The material in this book has been used for a semester and a half in a graduate level course
in the applied mathematics program at the University of Maryland.

e I lecture from the introductory material in each unit, with material from the Case
Studies used to occasionally provide extra information and motivation. Students can
become quite passionate about some of the Case Studies, especially the more visual
ones such as the image deblurring problem (Chapter 6), the data clustering problem
(Chapter 11), and the epidemiology models (Chapter 19 and 21).

e For quizzes and exams, I derive problems from the Mastery points at the beginning
of each unit.

e If possible, I like to allow “laboratory time” in class for students to work on some of
the Challenges. The opportunity to see how other people solve problems is helpful
even to the best students. This is especially true if, as at the University of Maryland,
the students in this course come from backgrounds in mathematics, computer sci-
ence, and engineering. This provides a remarkably diverse set of viewpoints on the
material and enriches the dialog.

e Many of the Case Studies were originally homeworks.

e For a term project, I often ask students to develop a Case Study, using the tools
presented in the course to solve a problem in their application area. Such projects can
then be adapted for use in later terms. My students Nargess Memarsadeghi, David
A. Schug, and Yalin E. Sagduyu developed particularly interesting case studies, and
adapted versions of them are included here.
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e There are not many unsolved exercises in this book. In the age of the Internet, there
are very few textbook problems for which solutions cannot be found somewhere,
and providing solutions here at least puts all students on equal footing. Some un-
solved exercises and Case Studies are available on the book’s website, and I would
be grateful for your contribution of additional ones to post there.

There is a great deal of flexibility in choice and ordering of units, except that the
optimization unit should be covered before nonlinear equations, and dense matrix compu-
tations should be discussed before optimization. The first six units form the syllabus for
a one semester course at Maryland, while the final one is combined with a textbook in
numerical solution of partial differential equations for the second semester.
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The topic of this book is efficient and accurate computation with mathematical mod-
els. In this unit, we discuss the basic facts that we need to know about error, software, and
computers.

We begin our study with some basics. First in Chapter 1 we consider how errors are
introduced in scientific computing and how to measure them. We apply these principles in
Chapter 2, studying how small changes in our data can affect our answers. In Chapter 3,
we see how computer memory is organized and how that impacts the efficiency of our

algorithms. Then in Chapter 4, we study the principles behind writing and documenting
our algorithms.

BASICS: To understand this unit, the following background is helpful:
e MATLAB programming [78].

e Gauss elimination; see a linear algebra textbook or a beginning book on numerical
analysis or scientific computing [148].



MASTERY: After you have worked through this unit, you should be able to do the follow-
ing:

o Identify the sources of error in scientific computing.

e Represent an integer in a fixed-point number system and a real number in a floating-
point number system.

e Use the parameter €, (machine epsilon) to determine the error introduced in floating-
point representation.

e Measure relative and absolute errors and determine how they are magnified during
computation.

e Write algorithms that compute values such as the sum of a series, avoiding unneces-
sary inaccuracies.

e Determine ways to avoid catastrophic cancellation in designing algorithms.

e Use forward and backward error analysis to assess the quality of a computed solution
to a problem.

e Determine whether a problem is well-conditioned or ill-conditioned.
e Discuss the importance of stability in an algorithm.

e Measure the sensitivity of a problem using derivatives, condition numbers, Monte
Carlo experiments, and confidence intervals.

e Distinguish between a row-oriented matrix algorithm and a column-oriented matrix
algorithm, and be able to write them for simple tasks.

e Explain how matrices are stored in main memory and moved to cache, and perform
counts of page moves.

e Count the number of multiplications in a given MATLAB algorithm.
e Explain what the BLAS are and why they are useful.

e Document computer programs effectively.

e Understand the principles of modular design.

e Write a program to validate a function that you have written.



