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Preface

Most books on number theory treat with more or less detail various aspects
of Diophantine analysis, a subject which can be described briefly by saying
that a great part of it is concerned with the discussion of the rational or integer
solutions of a polynomial equation f(x;, x,..., x,) = 0, with integer co-
efficients. It is well known that for many centuries, no other topic has engaged
the attention of so many mathematicians, both professional and amateur,
or has resulted in so many publisiied papers. Nevertheless, apart from reports
or surveys, there are very few books dealing only with Diophantine equations,
and sometimes these are either very elementary or deal only with special
aspects of the subject. It seems therefore desirable to produce a more repre-
sentative account, and an attempt is now made to do this. [ have tried ‘o
preserve the old spirit and traditions of Diophantine analysis, and to these I
attach great importance.

It is hoped that all readers will find herein some results which are of interest
to them and which do not require too much knowledge. Scme well knoewn
elementary results have been included for the sake of completeness. Accounts
have been given without undue generality of many results which seemed to
me of greatest significance, and most representative of the subject. Note has
been taken of various Diophantine problems, both classical and recent ones,
which seemed worthy of special attention. I have included a number of results,
really part of the subject but not usually found in accounts of Diophantine
equations, and indicating something about their role in number theory. The
material is arranged in a systematic way such that a basic idea runs through
each chapter, and it is hoped that the presentation is reasonably self-contained.

The proofs of the results vary considerably. Some are very elementary and
others are rather simple, making little demand upon specialized knowiedge.
This does not apply to the demonstration of the really important theorems.
Many require a knowiedge of the fundamental results for an algebraic number
field, for example, the basis for the integers. the finite generation of the
units and the finiteness of the number of classes of ideals. When more know-
ledge of algebraic numbers is required as for Fermat's last theorem, I state
the results assumed in the proof. Occasionally a brief introductory account



vi PREFACE

is given of relevant results or principles required, for example, of some
algebraic geometry and the invariants and covariants of binary cubic and bi-
quadratic forms, and also for local or p-adic applications.

This book had its origin in the lectures on Diophantine equations given at
Cambridge (England), Toronto (Canada), Varenna (Italy), and Urbana
(Illinois), and so the reader must not expect an exhaustive treatise. However,
it seemed desirable to enlarge the scope of the book and in particular some
mention is made of the more important and worthwhile results, especially
recent ones.

A great deal of number theory also arises from the study of the solution in
integers of a polynomial equation f(x;, X,,. .., x,) = 0, and so our subject
is coextensive with most of number theory. Hence it becomes necessary to
make a choice of material, both classical and modern.

There is no need in this book to go into detail about general Diophan-
tine problems whose study forms part of a general theory to be found in the
usual treatises such as the representation of number by quadratic forms in
several variables, or by norm forms in algebraic number fields.

No account has been given of theorems whose proofs are of an advanced
analytical character such as the applications of the Hardy-Littlewood-
Vinogradoff circle method, though many interesting and important results
have been found in this way, for example, Waring’s theorem on the represen-
tation of an integer as a sum of powers, and Davenport’s theorem that every
homogeneous cubic equation in at least 16 variables has an infinity of integer
solutions.

Unless the results are of fundamental importance, arithmetical proofs have
also been usually omitted when they are lengthy and complicated, or involve
considerable details, or excessive numerical work, or are out of place in this
book. Among such instances are Linnik’s proof of Waring’s theorem, and
Siegel’s theorem on the solution of the binomial equation ax! + by' = c.
Many striking results on the solution of equations of the form ax™ + by = ¢
can be stated very simply but, unfortunately, their proofs require a surprisingly
large amount of calculation and so are not discussed here. This applies to
proofs of many simple and long sought results given by Ljunggren. An out-
line, however, is given of some of the specially interesting ones.

I have also omitted a discussion of results which require too much pre-
vious preparation and knowledge such as the modern developments linking
Diophantine analysis with the new algebraic geometry and homological
algebra. These have led to many new points of view as can be seen from
Lang’s book and Cassels’ recent report.

Most of the book is concerned with the classical theory of the subject, in
which the unknowns were in general elements of the rational field Q, and the
solution of the equation involved only operations in this field. Occasionally
solutions were considered in some quadratic and cubic fields, and more
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importantly in cyclotomic fields in connection with Fermat’s last theorem.
Further developments led to emphasis on solutions in fields other than Q,
and in particular, in finite fields. This required a discussion of the solvability
and the number of solutions of a polynomial congruence,

f(@) = flx1, Xg5. .., Xa) = 0 (mod p7),
where p is a prime number. Such congruences had previously arisen in the
solution of some equations f(z) = 0, and in particular in the Hardy-Little-
wood analytic solution of Waring’s problem that every positive integer n
can be expressed as a sum of k r-th powers of non-negative integers where &
is independent of n.

Great advances have recently been made by the association of con-
gruences with types of zeta-functions, and many important and suggestive
results have been found. In particular, this has led to highly probable con-
jectures when f(x) = 0 is a plane cubic curve of genus one, and a new field
of research has been opened up.

Sufficient has been said to show that Diophantine analysis draws upon
resources from many branches of mathematics, for example, the higher
arithmetic, algebra, geometry, analysis; not only thé classical aspects of these
subjects but also the most recent developments.

I have much pleasure in acknowledging my great indebtedness to the many
writers on Diophantine equations, both ancient and modern, many of whom
are not mentioned here. From these, I have learnt much and also derived
inspiration. In fact, my interest in the subject was aroused in my school days
by reading the chapters on Diophantine equations usually to be found in
many of the algebra books of the first half of the nineteenth century. These
except for Euler’s algebra have long since been forgotten.

Among the writers on Diophantine Equations whom I have studied are
Borevich and Shafarevich, Carmichael, Delone and Faddeev, Dickson, Lang,
Nagell, Skolem. Many books on number theory also contain useful sections
on Diophantine analysis. There may be mentioned those by Bachmann,
Hardy and Wright, Landau, Le Veque, Nagell, Sierpenski, Uspensky-
Heaslet. I have also consulted many papers and memoirs, in particular those
by Billings, Birch and Swinnerton-Dyer, Cassels, Erdos, Fueter, Ljunggren,
Nagell, Pocklington, Roth, Selmer, Skolem, Siegel. Many references have
been given but the list is by no means complete, especially for the older results.
For these Dickson’s invaluable “History of the Theory of Numbers’ may
be consulted.

Nov. 1968 L. J. MORDELL
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CHAPTER 1

Introduction

Preliminary

1. Let x,, X, . . ., X,, say =, be n variables, and let f(x;, x,, . . ., X,), say f(=),
be a polynomial in these variables with rational coefficients. There will be no
loss of generality in supposing that the coefficients are integers since we shall
be concerned with equations f(=) = 0. An obvious question is the

Problem. To find some or all of the solutions of f(z) = 0 in
1. rational numbers, i.e. in the field Q;
I1. rational integers, i.e. in the ring Z.

Suppose first that f(=) is a homogeneous polynomial. We ignore the trivial

solution z = 0. Then the questions I and II are clearlyt equivalent, and we

can confine ourselves to integer solutions with (x;, x5, ..., x,) = 1.
Suppose next that f(=) is a non-homogeneous polynomial. On putting

X1 = Y1/ Vns1s- o> Xn = YulVns1s

we have a homogeneous equation

g(yls Y2y« oo Vns yn+1) =0.

There is now a 1-1 correspondence between the rational values of =, and
those integer values of # with y,.; # 0, and (¥, Y2, ..., Yas1) = L.
We may also have simultaneous equations of the type f(z) = 0, e.g.

fi@) =0,...,f(z) =0.
These can be written as the single equation
fi@) + -+ + fi(=) = 0.

More generally we can impose restrictions upon the variables. Thus we can
require them to be positive integers. The simplest significant problem then
arising is x,x; = n, and the solutions of the natural questions arising from
this lead in due course to the classical results on the divisor problem and the
theory of prime numbers. We are also led to Waring’s problem on the repre-
sentation of integers as sums of rth powers. We can require variables to be
prime numbers and then problems associated with Goldbach’s theorem arise.
We may also allow the variables to be algebraicintegers, for example, Gaussian
integers of the form x + yi where x and y are rational integers.

t This statement due to Gauss is disputed by Dickson.'2
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The general problem suggests many questions. Can we find reasonably
simple necessary conditions for the solvability of f(z) = 0? Are these con-
ditions sufficient? Can we, having found some solutions, deduce from these
others or an infinity of others, or all the solutions ? What can be said about the
number of solutions or their magnitudes in terms of the coefficients of f(x)?
Questions may also be asked about the arithmetical properties of solutions.

2. Necessary conditions for solvability.

Theorem 1

Rational or integer solutions of f(x) = 0 can exist only if f(«) = 0.can be
satisfied by real values of =.
Proof. Obvious.

Theorem 2
Integer solutions of the inhomogeneous equation f(z) = 0 can exist only if the
congruence
f(z) = 0 (mod M)

has solutions for all integers M.
Proof. Obvious.

The elementary properties of congruences show that we need only consider
M = p® where p runs through the primes and « = 1,2, .. ..

Theorem 3
Integer solutions = # 0 of the homogeneous equation f(z) = 0 can exist only
if the congruence
f(z) = 0 (mod M),

has solutions for which (xy, X5, ..., X,, M) = 1 for all integers M; and if in
particular when M = p®, it has solutions for which not ail = are divisible by p.

This is obvious since we may suppose (xy, X, . . ., X,) = 1inahomogeneous
equation, and this = must satisfy f(z) = 0 (mod M).

It is also obvious that if an inhomogeneous equation f(z) = 0 implies that
X; = xp = -+ = x, = 0(mod p%), for given p and arbitrary large «, then
2z = 0 is the only solution.

Finally, if the equation f(z) = 0 implies that one variable, say x, is divisible
by p for an infinity of primes p, then there can only be solutions with x; = 0.

REFERENCES

1. L. E. Dickson. Fallacies and misconceptions in diophantine analysis. A new
method in diophantine analysis. Bull. Amer. Matk. Soc., 27 (1921), 312-319.

2. L. E. Dickson. “Modern Elementary Theory of Numbers”. Univ. Chicago
Press, Chicago (1939), Chapter IX.



CHAPTER 2

Equations Proved impossible by
Congruence Considerations

1. We now comnsider the
Problem. To find by congruence considerations, equations f(z) = 0, with either
no integer solutions or only the solution z = 0.

This requires the application of some elementary results in number theory.
Many of the results now given are classical. We begin with a preliminary dis-
cussion of the equation

xi =a + bx,, ey
where r is an integer > 1. First, let »r = 2 and so
x2 =a + bx,. 2)
This is solvable if and only if the congruences
x? = a(mod 2%, x? = a(mod p?), xI =a(modyg’),...

are solvable, where 2% || b, i.e. 2% is the highest power of 2 occurring in b,
P?| b....Forsimplicity, we suppose (e, b) = 1. When « = 1, the congruence
is always solvable; when « = 2 only if @ = 1 (mod 4); when « = 3 only if
a = 1 (mod 8), and then it is also solvable for « > 3. The congruence is solv-
able for all B if it is solvable for B8 = 1. Then a is called a quadratic residue of
p, 1e. (a/p) = 1. If the congruence is insoluble, a is called a quadratic
non-residue of p, i.e. (a/p) = —1. From these results, it follows that every
prime divisor p of x2 — afor integer x is either a divisor of a, or can be repre-
sented by a finite number of arithmetic progressions. Thusif p | (x2 + ¢2) and
p # 2, thenif (p,c) =1, p = 1 (mod 4), butif p = 3(mod 4), p| c.

Theorem 1
The equation
f(xl; Xy ooy xn) = g(x) (3)
is impossible in integers if f(x, Xa, . . ., X,) has a prime factor p which cannot
be a divisor of g(x), e.g. g(x) = x2 — a where (alp) = —1.
Proof. Obvious.
Suppose next that r = 3 in (1). Then

x3 =a + bx,, 4
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and for simplicity we suppose that (a, b) = 1. Let 3% | b, p? | b, .. .. Then (4)
is solvable if and only if

x$ = a(mod 3%, x3=a(modp?), x}=a(modyq),... )

are solvable. When o = 1, the first congruence is always solvable. When
o = 2, it is solvable only when a = + 1 (mod 9), and then it is solvable for all
«. Take next the second congruence. When p = 2 (mod 3), it is solvable for
all 8. When p = 1 (mod 3), the condition for solvability is not so simple and
it is not easy to specify the values of a for which the congruence is solvable.
Then a is called a cubic residue of p and we write (a/p); = 1. It might be noted
that (2/p); = 1 if and only if p can be represented in the form p = x? + 27y?
with integers x and y. Similar remarks apply for other values of r.

2. Congruences mod M.

We now apply to various equations, congruences mod M, where M is a
prime power. We commence with M = 2

M = 4.
The equation
x4+ xZ=4x;+3 6)

has no integer solutions.
Forx2=0,1,x2=0,1,x3+x2=0,1,2.
The equation

X2+ x% = (4a + 3)x Q)

has only the integer solution x, = x, = x3 = 0.

This is obvious if a < 0, and so we need only consider a > 0. From (6),
x3 # 1 (mod 2), and so x; = 0(mod 2), and then x; = x; = 0 (mod 2).
Since we may suppose (x;, X3, x3) = 1, we have a contradiction unless
Xy = Xy = X3 = 0.

M =38
The equations

X2+ 2x3=8x;3+5 or 8x3+ 7,

and x2 —2x2=8x;+3 or 8x3+ 5 ®
have no solutions.
Fortomod 8, x2 =0,1,4and so x3 + 2x2 £ 5,7, x2 — 2x2 # 3, 5.
The equation
X3+x2+x2=4"08x,+7) 9

has no solutions.
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If « 21, x, = X3 = x3 = 0 (mod 2), and so we need only consider « = 0.
But then x3 + x2 + x3 # 7 (mod 8).
The equation

ax? + bx3 + ¢cx3 =0, abc # 0, (x1, X9, x3) = 1 (1v)

has only the trivial solution x, = 0, x, = 0, x5 = 0 if either
a=b=c=1(mod2) and a=b = c(mod4),

1(mod2) and b+ ¢ = aor4(modB).

or a2=b=c
The result is obvious in the first case since
x? + x2 + x3 # 0 (mod 4).
In the second case, we write
ax? + bx% + cx% = 0 (mod 8).

Clearly x,, x,, x5 are not all odd since @ + b + ¢ # 0 (mod 8). Also two of
the x cannot be even and so only one can be even. This cannot be x; since
b + ¢ # 0 (mod 8), nor x, since cx; is odd, nor x; since bx, is odd.
The equation
22 = (ax® + by?)? — 2k(cx? + dy?)? (11)

has no integer solutions #(0,0,0) if a + b = 0 (mod 2), cd = 1 (mod 4),
k =1 (mod 2).
Suppose first that x = 1 (mod 2), y = 0 (mod 2). Then

22 =qg% — 2¢® = —1 or 2(mod 4),

and this is impossible. Similarly if x = 0 (mod 2), y = 1 (mod 2).
Suppose next that x = y = 1 (mod 2). Then

(%)2 = (a ; b)a - 2k (c—-;—é)z (mod 4)

—1 or 2 (mod 4),

since ¢ + d = 2 (mod 4).
M = 16.
The equation
axt + bxi + cxf + dxt =0, (x1, X2, X3, xg) = 1 (12)
has only the trivial solution z = 0 if
I. a # 0 (mod 16), etc.
II.a+b#0,a + ¢ #0(mod 16), etc.

HI.a+b+c#£0,a+ b+ d# 0(mod 16), etc.
IV.a+ b+ c + d# 0(mod 16).
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Since x} = 0 or 1 (mod 16), thesc conditions exclude in turn one odd value,
two odd values etc. for the variables. A simple instance occurs if we take
a, b, ¢, d to be congruent mod 16 to any distinct four of 1, 2, 3, 4, 5, 6.

M = 2%,
The equation
ax? + bx3 + cx% = 2dx;x,%,, (13)

where a = b = ¢ = 11 (mod 4) has only the solution x; = x, = x5 = 0.

Obviously x;, x;, x5 cannot all be odd, for if one is even, so are the others
since then

x2+x2+x2= O(niod 4).
Put X, = 2X1, Xg = 2X2, x;, &= 2X3. Then
aX% + bX% + CX% = 4dX1X2X3.

Similarly X;, X;, X; are all even. Hence all the x must be zero since they are
divisible by 2% where « is arbitrary.

M = 32.
The equation

(@1x% + ax} + agx% + ax3)(byx? + byxE + byx2 + byx?)
= 2k(c1x? 4 ¢x% + ¢332 + coxI)(dix? + dpxi + dpx? + dix?) (14)
has only the trivial solution z = 0 zf the a, b, ¢, d are all odd, and
a, =0, = a; s“a4 (mod 8), b, = b, = by = by (mod 8),
(1 + ¢+ ¢c3 + c)dy + ds: + ds + dy) = 0 (mod 16).
We may suppose without loss of generality that
aix? + axx% + azx2 + a,x2 = 0 (mod 2).
Then either
I x; = x3 = x3 = x4 = 1(mod 2),
or, say,
II. x; = x3 = 1 (mod 2), x3 = x4, = 0 (mod 2).

For I, a;x? + a.x3 + asx% + a.x? = 4 (mod 8), and so the left-hand side of
(14) is =16 (mod 32). The right-hand side is =0 (mod 32), i.e. a contradiction.
For II, a,x? + au.x3 + azx% + ax? = a, + a, = 2 (mod 4), and so the left-
hand side of (14) is =4 (mod 8). The right-hand side is =0 (mod 8), i.e. a
contradiction.

M = 3¢,
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M = 3.
The equation

Ba + D)x% + 3b + Dx% = 3¢, ¢ # 0(mod 3) (15)
has no integer solutions.
Here x? + x2 = 0(mod 3), and since x% =0,1(mod3), x; = x, =
0 (mod 3), and this is impossible.
M=09.
The equation
X+ x3+x3=9x, +4 (16)
has no integer solutions.

This is obvious since x} = 0, + 1 (mod 9).
The equation

.\':13 + 2.\’% + 4\”3 = gxia (xls X2y X3, xi) =1 (17)

has only the trivial solution z = 0.
Here x3 + 2x3 + 4x3 = 0 (mod 9). The only solution of this is x; = x, =
x3 = 0 (mod 3), and then x4 = 0 (mod 3).

The equation

ax® + 3bx%y + 3cxy? + dyd = 28 (18)

L]

has no integer solutions if
a=d=4(mod)9), b = 0 (mod 3), ¢= *1(mod3).

We may suppose (x,y,z) = 1. Clearly xy # 0(mod 3), since 4x® =
z% (mod 9) requirtes x =z =y =0 (mod 3). From (18), z = ax + dy
(mod 3),

28 = a®x3 + 3a%dx%y + 3ad?xy? + d®y® (mod 9),
and so '
d—d®
3

_ 3
(“ L ) X+ (b — @d)xy + (¢ — addx® + ( )y" = 0 (mod 3).

Since to mod 3, x® = x, x2 = 1, we have
x+Gb-1Dy+(c—Dx+ y=0(mod3), or x=0(mod3),

and this has been excluded.
The result implies that the equation

ax® + 3bx%y + 3cxy? + dy® =1

has no rational solutions.
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M=7.
The equation

(Ta + Dx3 + (7b + 2)x3 + (Tc + x5 + (7d + 1)xyx3x53 = 0,
(x1, X3, x3) = 1, (19)
has only the trivial solution = = 0.
Here x3 + 2x3 + 4x3 + x1x.x3 = 0 (mod 7).

Also x3 = 0, +1 (mod 7). It suffices to show that x; = x, = x3 = 0 (mod 7);
if x3=0, x +2x3 =0 and then x, = x, = 0: if x3 # 0, we can put
X; = X1Xg, Xo = X,Xx3, and then

Clearly X, X; # 0,andso X3 = +1, X3 = + 1. This leads to four impossible
cases since

1. X3 = X3 =1gives X, X, =0,
2. X3 = X3= —1gives X, X, = —1,ie X3X3= -1,
3. X3=—-X3=1gives X, X, =4,ie X}Xi=1,
4 X3= —X3= —1gives X; X, = 2,ie. X3Xi=1
M =73
The equation
X? + 2Xg = 7(Xg + 2x2)’ (xls X2, X3, x!) = 1 (20)

has only the trivial solution z = 0.
Here x} + 2x3 = 0 (mod 7) and so x; = 7X;, x, = 7X;. Then

THX3 + 2X3) = x3 + 2x3.

This gives x; = 7X;, x, = 7X, and then (x,, x5, X3, x¢) = 7.
An obvious deduction is that the equation

x4+ 28 =170z + 2 1)
has no rational solutions.
M = p® p a prime.
The equation

x4+ 1=px;, p=3(modd) (22)

is impossible.
Obvious since (—1/p) = —1.
The equation
x2 4+ 1 = ax,, (23)

is impossible if a has a prime factor =3 (mod 4).



