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PREFACE

Chemical pollution of biospheric environments by human activity
has developed into a problem of regional and even global proportions
in recent decades. Defining the extent of this problem and
estimating its long-term effects on life-forms presents a formidable
challenge to contemporary science. Geochemists can make important
contributions to this effort in defining background concentrations,
in mapping and accounting for dispersion patterns, in understanding
the chemical interaction of pollutants with natural dissolved
constituents and mineral matter, in estimating residence times, and,
particularly, in estimating the extent to which geochemical
processes will remove pollutants from the environment.

This MAC Short-:Course Handbook is a comprehensive and up-to-date
instructional text on environmental geochemistry. The authors and I
hope that it will further communication between earth scientists,
chemists and biologists on environmental concerns.

Many thanks got to the authors and lecturers for their time
and effort, to W.S. Fyfe and J.R. Kramer for organizing the content
of the Handbook, and to H.W. Nesbitt and W. Shotyk for editorial
assistance.

Mickoet E Fle S

Michael E. Fleet

Department of Geology
University of Western Ontario
London, Ontario

April 1984
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CHAPTER 1

THE GEOCHEMICAL CYCLE

W. S Fyfe

Department of Geology
University of Western Ontario
London, Canada N6A 5B7

INTRODUCTION

The concept of the geochemical cycle was developed to focus
attention on the pathways of any chemical element or isotope of the
earth system during geologic history. In a sense it involves the
ultimate objective of geochemistry. The data necessary to achieve
the objective are rarely available. If they were, there would be
little necessity for holding this short course. 1In this introduct-
ory paper I wish to focus attention on some recent developments
which have, or are showing, the inadequate state of present know-
ledge.

Urey (1956) drew attemtion to the importance of geochemical
cycling in his classic discussion of the carbon dioxide system. He
used the simple reaction:

CaSi03 + COy (g) = CaCO3 + SiO0p

to describe atmosphere—crust reactions at low temperatures which fix
carbon dioxide, reactions which later may be reversed during meta-
morphism and magmatism. A system which dramatically shows the
influence of cycling on a much shorter time scale is provided by the
biosphere. As stressed by Allegre and Michard (1974), the ratios of
the mass of the hydrosphere, atmosphere and biosphere are 70000:
300:1. The biosphere appears insignificant but when the production
rate of organic material is considered at about 1017 g a"l, and if
this number is integrated over the 3 billion years or more for which
there is clear evidence for abundance of life, the integrated sum of
biomass approaches the mass of the earth as was first pointed out by
Abelson (1957). As living matter contains a significant fraction of
elements other than 0-C-N-H, and normally metals make up 10,000 pgm
or so, the mass of such species recycled through the biomass (~10 4
g) is similar to the mass of the earth's crust. Thus the geo-
chemical significance of any of the classic geospheres (lithosphere,
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core, mantle, etc.) is not simply a function of its mass at any
given time, but is also a function of the fluxes in and out of the
given part of the earth we choose to study.

During this present age of plate tectonics it perhaps should be
noted that the carbon cycling rate of 1017 g a~l should be compared
with the rate of mantle volcanism ( 3 x 1016 g a_l) which creates
new crust and is associated with the driving forces of plate tecton—
ics.

The classical concept of the geochemical cycle is described by
Mason (1966) as follows: "In the lithosphere the geochemical cycle
begins with the initial crystallization of a magma, proceeds through
the alteration and weathering of the igneous rock and the transport-—
ation and deposition of the material thus produced, and continues
through diagenesis and lithification to metamorphism of successively
higher grade until eventually, by anatexis and palingenesis, magma
is regenerated”. This classic cycle of the 60's is shown in Fig.
1. It is important to note that while Mason clearly recognized the
biosphere as a significant part of the major cycle, there is little
connection to the deep earth. The emphasis on near surface process-
es partly shows the state of knowledge of 1966. Magma generationwas
put at the Verhoogen (1960) figure of 3 x 1015 g a'l, a figure we
now know is more than an order of magnitude too low. Before the
great sea floor discoveries of the past two decades, most data was
drawn from continental observations and in fact, Verhoogen's figure
is about correct for andesite generation rates.

Primary material

Fig. 1. The geochemical cycle (after Mason, 1966).

)
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Most recent workers concerned with geochemical cycles have
tended to focus on "box models". Each box can be chosen to repre-
sent that part of the planet (the core, the biosphere, the Baltic
Sea, etc.) which is to be described. The chemistry of a given box
is normally considered to be in an essentially steady state with
constant mass fluxes in and out. The task of describing the given
region then becomes one of defining the species in the box and their
chemical reactions, and defining the steady state fluxes. The box
model leads to the concept of a "residence time" for a given species
in the chosen box. In terms of environmental geochemistry, the
concept is of critical importance (e.g. the residence time of a
radioactive element in the human body, or of a species in the
groundwater reservoir). For many parts of the earth the approxima-
tion of a steady state is reasonable for short time scales but some
degree of caution is needed as the mass of a given box becomes
small. For example, recent studies of Chesapeake Bay (Orth and
Moore, 1983) show that for this large estuarine region, biomass has
diminished dramatically over the last ten years probably because of
an increased influence of human activity.

In recent years major gaps in large scale geochemical models of
the Earth have become increasingly evident. There 1is increasing
evidence that fluxes between the atmosphere-hydrosphere-crust system
with the mantle have been greatly underestimated. Recent data
largely derived from the study of rare gas isotopes indicate that
there is significant interaction from the lower mantle or even the
core region (0'Nions and Oxburgh, 1983; Allegre et al., 1983).
Exchange across all the major geosphere boundaries is being recog-
nized on a scale not quite appreciated previously. There is also
increasing evidence that the concept of steady state ocean chemistry
is a little shaky and that the time constants of fluctuations may
not necessarily be long.

Interaction between the ocean floor crust and ocean system has
attracted much recent attention. The recognition that about 50% of
the total heat production of the planet is vented at the ocean
ridges, and that half of this energy is removed by convective circu-
lation of sea water has had a profound influence on our thinking
about the history of the oceans. It is becoming clear that ocean
chemistry, and sediment chemistry, is not entirely controlled by
near surface processes. There is exchange with the deeper parts of
the igneous ocean crust and the time scales of the exchange are
relatively short.

Box models of geochemical cycling assume a steady state within
the box. But it is obvious that no planetary object which is cool-
ing can be in a perfect steady state; all fluxes must reflect avail-
able energy. For major parts of the earth, the steady state may be
reasonable on human time scales.

But today, as parts of this workshop show, there is increasing
concern with human perturbations of local steady states. Human
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activity is drastically changing the fluxes in major parts of the
surface environment as the most simple calculations will show (see
Fyfe, 1981). Thus modern western man uses about 20 tons a~! of
mineral materials for his needs. This flux of 4 x 1016 g a7l,
exceeds the rate of ocean crust formation. Man burns more than 3
billion tons of coal per year, a mass (3 x 1015g) which exceeds the
rate of subduction zone volcanism. Burning fossil carbon fuels is
perturbing the atmosphere at easily observable rates but as coal and
hydrocarbon fuels contain other species the local perturbations by
sulphur and nitrogen acids and some trace metals can be extreme.
For metals such as Fe, Mn, Cu, Zn, Pb, Sn, the man made flux to the
oceans is now at least 1Cx the pre-man levels.

The human impact on sediment transport is perhaps the most
dramatic perturbation. As shown by Toy (1983) conversion of forest
to farm land can increase sediment transport by a factor of 1000x, a
forest fire can increase erosion by 7000x, changing grassland to row
crops can lead to 100x increase in erosion. In parts of Iowa (see
also Risser, 1981) top soil erosion rates are now 444 tons ha~l a-1
or represent land surface removal at a rate of 2 cm a”l,

Such perturbations greatly complicate predictions of environ-
mental influences of toxic materials based on sediment core data. A
change in erosion patterns which changes light penetration into, and
chemistry of waters, can dramatically perturb the biomass (see Orth
and Moore, 1983). In what follows I wish to briefly mention some
areas where there have been major changes in our views concerning
geochemical cycles.

THE OCEAN RIDGES AND OCEAN CHEMISTRY

Recent data principally derived from studies of oceanic heat
flow patterns and age have shown that about 50% of earth's internal
energy is vented near the ocean ridge system ( 1020 cal a~1l). For
a comprehensive review of ocean floor observations see Emiliani
(1981). Wolery and Sleep (1976) analysed the difference between
theoretical and observed heat flow patterns and showed that about 4
x 1019 cal a7l was not recorded by measurements of conductive heat
flow but was removed by circulation of cold sea water onto the
oceanic crust (see also Edmond and von Damm, 1983). Given these
energy fluxes it follows that the ocean water circulation rate
through the ridges is of the order of 1018 g a‘l, a figure which
implies that the entire ocean mass (l.4 x 1024 g) 1is processed
through the ridges every few million years (see Fyfe and Lonsdale,
1981). Recent studies of heat flow in older ocean crust indicates
that convective circulation continues in ocean crust almost to the
point of subduction and influences sediment chemistry. It has been
shown that sea water penetrates to depths corresponding to the
oceanic Moho and it is possible that exothermic hydration reactions
such as serpentinization may provide some of the energy to maintain
the circulation far from the igneous thermal input at the ridges.
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It is now certain that the sea water which enters the convect-
ive system is dramatically modified by the time it vents back to the
sea floor and the oceanic lithosphere is correspondingly modified.

In particular the highly reduced discharged ocean water carries
trace metals at much larger concentrations than the normal marine
waters. Edmond and Von Damm (1983) show that species 1like iron
occur at the 100 ppm level while copper, zinc, nickel, etc., occur
at the ppm level in hot vent waters. As better analytical data
become available exotic gas phases are being detected (CH4, Hp, CO,
N>0) some of which may have inorganic source reactions but others
may imply biological processes by populations of thermophilic
bacteria living in the hot porous rocks of the discharge zones
(Baross et al., 1982; Lilley et al., 1982).

The importance of these discoveries can be shown by a few
examples. Thus for copper, the average content in river water is
about 5 ppb. Given a river flux to the oceans of 3.6 x 1019 g a~l,
the copper flux is about 1.8 x 1011 g a~l. Given a hydrothermal
flux of 1018 g a~l with copper at 1 ppm, the hydrothermal copper
transport is near 1012 g a‘l, about 10 x the continental runoff
flux. When we note that the present man made flux is of the order
of 4.5 x 1012 g a-l, we see that the two presently largest fluxes
into the oceans and sediments, were not considered in geochemical
cycles a decade ago! This conclusion is probably true for most
heavy metals. For some species like uranium which is present at low
levels in basalts, sea water circulation actually removes uranium
from the water and enriches the basalts (the same is true for Rb, K,
Na, Mg, S, etc.). It is clear that until all the fluxes are well
quantified, the presently available residence times of many elements
are likely to be in serious error and these parameters are of great
importance for environmental considerations.

There is presently great interest in the general problem of the
constancy of sea water composition on various time scales. A most
instructive case is provided by studies of the strontium isotope
systematics of sediments. At the present time rivers feed 87/86gsr
to the oceans at a ratio of 0.711. Modern sea water has a ratio of
0.7091. Clearly there must be other Sr sources influencing sea
water and the obvious source is hydrothermal fluids moving through
basalts with a ratio 0.702. Recent data (Faure, 1982; Burke et al.,
1982) clearly show that there have been large fluctuations in the
87/86sr ratio during the past 600 Ma (a range of at least 0.709-

0.7067). The causes of these fluctuations can be complex as
stressed by Faure, but there is a clear suggestion that continental
runoff inputs and volcanogenic inputs may fluctuate. The same

factors which influence strontium isotopes may also influence other
critical trace metals, critical in the sense that trace metals may
dramatically influence the biosphere population (Ortner et al.,
1983). Such observations for recent times must certainly make us a
little concerned about ocean chemistry constancy back into Archean
times when volcanism and hydrothermal influences could have been an
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order of magnitude more intense.

It is also becoming clear that as well as multimillion year
fluctuations in ocean chemistry, small scale fluctuations are also
possible. Thus recently Brewer et al. (1983) report a salinity
decrease in parts of the deep Atlantic over the past 20 years,
probably a response to climate fluctuations. The fact is that our
significant record of changes in ocean masses is very short and
generally quite inadequately chemically.

The consequences of changes in ocean chemistry on short time
scales may be of great envirommental importance (cf. atmospheric
perturbations caused by volcanic eruptions such as the recent EL
Chichon event). Ortner et al. (1983) have shown that trace metals
such as copper and zinc can greatly influence carbon fixation in
marine phytoplankton. Van Andel (1983) has stressed the rapid
increase in knowledge and the surprises in our knowledge of "states
of past oceans”.

It is now clear that any detailed "box model” of large ocean
water masses must consider at least three major fluxes, continental
runoff, volcanic influences and human influences. The latter,
largely ignored a decade ago have profound influences on both major
(e.g. S, Mg, K) and trace metal (e.g. Cu, Zn, Li, Rb, U) fluxes.
More improved sampling and monitoring of such systems is needed
before adequate models of such large bodies is possible. I would
note that while oceans present such problems, the situation with the
atmosphere is even more critical and complicated (see Baum, 1982).

SUBDUCTION, MANTLE RECHARGE

It is interesting to consider the older geochemical cycle of
Fig. 1 and to note that no mantle recycling is shown. But there
certainly were those who believed in deep convection and return flow
and I am always impressed by the ideas and diagrams of Holmes
(1928). Uyeda (1977) considered the subduction process as one of
the great remaining questions of plate tectonics. In the past five
years or so knowledge of trench environments and the subduction
process have greatly increased due to more detailed seismic, drill-
ing and topographic studies in trench environments. Some of the
more recent data are summarized in Hilde and Uyeda (1983).

Plate tectonic theory requires that for a steady state earth,
the creation of new oceanic lithosphere at ridges must be balanced
by its removal in the subduction process. The mass of oceanic
lithosphere and continental lithosphere is approximately conserved
(Hallam, 1976). But clearly such conservation is an approximation
for a cooling planet. One of the great problems regarding the sub-
duction process is to define the exact nature of what is subducted.

All would agree today that new ocean crust added from the



