
The Genetic Basis of Sleep and Sleep Disorders

EDITED BY

Paul Shaw, Mehdi Tafti and Michael Thorpy

The Genetic Basis of Sleep and Sleep Disorders

Paul Shaw

Department of Anatomy and Neurobiology, Washington University in St. Louis, St. Louis, MO, USA

Mehdi Tafti

Center for Integrative Genomics at the University of Lausanne, Lausanne, Switzerland

Michael Thorpy

Albert Einstein College of Medicine, New York, NY, USA and the Sleep—Wake Disorders Center in the Department of Neurology at Montefiore Medical Center, New York, NY, USA

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

Published in the United States of America by Cambridge University Press, New York

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781107041257

© Cambridge University Press 2013

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2013

Printing in the United Kingdom by TJ International Ltd, Padstow Cornwall

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data
The genetic basis of sleep and sleep disorders / [edited by] Paul Shaw,
Mehdi Tafti, Michael Thorpy.

p.; cm.

Includes bibliographical references and index.

ISBN 978-1-107-04125-7 (Hardback)

I. Shaw, Paul, 1963 – II. Tafti, Mehdi. III. Thorpy, Michael J.
 [DNLM: 1. Sleep-genetics. 2. Sleep Disorders-genetics.WL 108]
 RC547

616.8'498042-dc23 2013014823

ISBN 978-1-107-04125-7 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Every effort has been made in preparing this book to provide accurate and up-to-date information which is in accord with accepted standards and practice at the time of publication. Although case histories are drawn from actual cases, every effort has been made to disguise the identities of the individuals involved. Nevertheless, the authors, editors and publishers can make no warranties that the information contained herein is totally free from error, not least because clinical standards are constantly changing through research and regulation. The authors, editors and publishers therefore disclaim all liability for direct or consequential damages resulting from the use of material contained in this book. Readers are strongly advised to pay careful attention to information provided by the manufacturer of any drugs or equipment that they plan to use.

The Genetic Basis of Sleep and Sleep Disorders

Foreword

This is a beautiful and useful book for the numerous world's sleep and dream clinicians researchers (hypnologists and oneirologists) and sleep researchers and we should thank the editors, Paul Shaw, Mehdi Tafti, and Michael Thorpy. Although I am not a specialist in genetics, I have been introduced to this discipline by one of my best students and coworkers, Jean Louis Vataltx, who pioneered this field in 1972, by reporting in Nature a study in inbred mice. Certainly, genetic studies of the sleep-wake cycle help the physiologist and I was interested to read the paper from the University of Missouri reporting the role of metabolic genes in sleep regulation. I was wondering which relationships between sleep deprivation and cognitive deficits (paper No. 17), and sleep and long-term memory storage (paper No. 20) have been demonstrated. In this field, may I suggest that results obtained in animal models should not be applied to humans.

Some 30 years ago, I had the rare opportunity to study a man, continuously recorded by EEG, who

suffered from Morvan's disease and did not sleep for 5 months. He was not sleepy and did not show any memory disturbances nor cognitive deficits and was able to complete several difficult cognitive tests. At the end of our report (Fischer-Perroudon C, Mouret J, Jouvet M. *Electroencephalogr Clin Neurophysiol.* 1974;36(1):1–18. French), we had the following question: what was the function of sleep?

However, it was only later that I recognized the very important role of genetics. In studying the patterns of rapid eye movements during dreaming in man, we found that these patterns were genetically controlled since they were identical in monozygotic twins, reared together or apart. This result opened the hypothesis that dreaming (REM sleep) might be an iterative genetic programming of the psychological individuation in man. Thus, long life to the future of genetic studies of dreaming.

Michel Jouvet Emeritus Professor of Experimental Medicine University of Lyon, France

Preface

The genetics of sleep and sleep disorders is still largely unknown and not well understood; however, new studies show the importance not only for understanding brain physiology but for sleep disorders and the circadian regulation that influences most body systems. In order to understand the physiology and pathophysiology of sleep, genetic studies are being developed that include new genetic techniques to tell us not only about brain regions that are activated or deactivated by sleep and alertness but also help us understand the pathophysiological mechanisms involved. This book, Genetics of Sleep and Sleep Disorders, details the important advances in the genetics of sleep disorders that hold promise to help us understand the underlying physiology and pathophysiology of sleep that will also aid in the diagnosis of sleep disorders.

There has been a major increase during the last decades in knowledge of the genetics of sleep and sleep disorders. Genetic epidemiologic studies have contributed considerably; however, there are marked differences in the level of knowledge between different aspects of sleep and individual disorders. Linkage, genome-wide association, and sequencing are yielding new insights into the basis of sleep traits. Mutations in the clock genes have been associated with Mendelian alterations of circadian rhythms and candidate gene association studies have been reported for a variety of sleep disorders. Most sleep disorders are considered to be complex genetic disorders. Recent progress has been made in identifying the genetic basis of narcolepsy and RLS and genomewide association studies have demonstrated several genetic loci associated with their pathogenesis. The genetic basis remains to be determined for the more prevalent sleep disorders, insomnia and obstructive sleep apnea. Epigenetic mechanisms are being recognized as playing a major part in gene regulation of sleep. In the future whole-genome sequencing may clarify the genetic basis of complex traits including those associated with circadian sleep-wake regulation and help discover new gene networks involved in the regulation of sleep and the pathogenesis of sleep disorders.

This book represents the first major overview of the accumulated scientific developments in genetics to the study of sleep and sleep disorders.

No previous book has been published which comprehensively focuses on genetics of sleep and its disorders. This book accumulates the most recently available information on genetics and epigenetics and is written by top specialists in the field, geneticists, sleep disorders physicians and sleep researchers, from the Americas, Europe, and Asia. The chapters are arranged in five major sections: an introductory section on principles of genetics and genomics, genetics of sleep and circadian rhythms, sleep physiology and homeostasis, genetics of the sleep disorders including, insomnia, sleep-related breathing disorders, circadian rhythm disorders, parasomnias and sleep-related movement disorders, psychiatric and medical disorders associated with sleep and finally therapeutics. The introductory section comprises chapters on linkage and associations, complex trait analysis, and genome-wide association studies, including the fundamentals and methodology of genetic methods. The second section addresses genetics of normal sleep and circadian sleep-wake rhythms and includes epidemiology, and presentations on Drosophila, C. elegans and zebrafish genetic models, new techniques such as optogenetic photostimulation, astrogial regulation, metabolic genes, circadian pacemaker control and epigenetic mechanisms. Section three presents the genetics of the electrocephalographic basis of normal sleep, homeostasis and circadian entrainment, sleep deprivation and effects on memory and synaptic plasticity. Section four discusses the role of genetics in the understanding of the sleep disorders including, insomnia, narcolepsy and the hypersomnias, sleep-related breathing disorders, circadian rhythm sleep disorders, restless legs syndrome, relevant psychiatric disorders and nocturnal epilepsy, and finally the future role of gene therapy.

This volume is intended primarily for sleep disorder specialists, sleep researchers, and geneticists; however, it is suitable for neurologists, psychiatrists, and any professional and researcher interested in the interdisciplinary field of sleep medicine. It will be of use for neurology, psychiatry and genetics residents and fellows, clinical psychologists, advanced graduate medical students, neuropsychologists, house officers, and other mental health and social workers who want to get an understanding the genetic basis of the physiology of sleep and pathophysiological and diagnostic features of sleep disorders.

We are greatly indebted to all the authors who have contributed to this book and are appreciative of the help of the staff of the Cambridge University Press in getting this book in print so quickly so that the contents are up-to-date and current. As findings in this area are rapidly advancing it is anticipated that future editions of this volume *Genetics of Sleep and Sleep Disorders* will take these developments into account.

Paul, Mehdi and Michael

Contributors

Ted Abel

Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA

Antoine Adamantidis

Department of Psychiatry, McGill University, Douglas Mental Health University Institute, Montreal, Quebec, Canada

Karla V. Allebrandt

Institute for Medical Psychology, Centre for Chronobiology, Medical Faculty, Ludwig-Maximilians-University, Munich, Germany

Simon N. Archer

Surrey Sleep Research Centre, Faculty of Health & Medical Sciences, University of Surrey, Guildford, UK

Amelie Baud

Wellcome Trust Centre for Human Genetics, Oxford, UK

Michel Billiard

Department of Neurology, Gui de Chauliac Hospital, Montpellier, France

Carlos Blanco-Centurion

Ralph H. Johnson VA and Medical University of South Carolina, Charleston, SC, USA

Diane B. Boivin

Centre for Study and Treatment of Circadian Rhythms, Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Quebec, Canada

Ethan Buhr

Department of Neuroscience, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA

Matthew E. Carter

Department of Biochemistry, University of Washington, Seattle, WA, USA

Nicolas Cermakian

Laboratory of Molecular Chronobiology, Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Quebec, Canada

Jennifer H.K. Choi

Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA

S.Y. Christin Chong

Department of Neurology, University of California San Francisco, San Francisco, CA, USA

Chiara Cirelli

Department of Psychiatry, University of Wisconsin/ Madison, Madison, WI, USA

Marc Cuesta

Centre for Study and Treatment of Circadian Rhythms and Laboratory of Molecular Chronobiology, Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Quebec, Canada

Thomas Curie

Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland

Yves Dauvilliers

National Reference Network for Narcolepsy, Sleep-Disorders Center, Department of Neurology, Hôpital Gui de Chauliac, Montpellier, France

Luis de Lecea

Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA

Derk-Jan Dijk

Surrey Sleep Research Centre, Faculty of Health & Medical Sciences, University of Surrey, Guildford, UK

Stephane Dissel

Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO, USA

Annette C. Fedson

Center for Sleep and Circadian Neurobiology, University of Pennsylvania, Philadelphia, PA, USA

Jonathan Flint

Wellcome Trust Centre for Human Genetics, Oxford, UK

Marcos G. Frank

University of Pennsylvania School of Medicine, Department of Neuroscience, Philadelphia, PA, USA

Paul Franken

Center for Integrative Genomics, University of Lausanne, Switzerland

Ying-Hui Fu

Department of Neurology, University of California San Francisco, San Francisco, CA, USA

Thorarinn Gislason

Department of Respiratory Medicine and Sleep, Landspitali University Hospital and Faculty of Medicine, University of Iceland, Reykjavik, Iceland

David Gozal

Sections of Pediatric Sleep Medicine and Pediatric Pulmonology, Department of Pediatrics, Comer Children's Hospital, Pritzker School of Medicine, The University of Chicago, Chicago, IL, USA

Devon A. Grant

Sleep and Performance Research Center, Washington State University, Spokane, WA, USA

Hakon Hakonarson

The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, and Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA

Makoto Honda

Sleep Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan

Hyun Hor

Center for Genomic Regulation (CRG), Centre for Genomic Regulation (CRG) and Universitat Pompeu Fabra (UPF), Barcelona, Spain

Christer Hublin

Finnish Institute of Occupational Health, Helsinki, Finland

Peng Jiang

Center for Sleep and Circadian Biology, Northwestern University, Evanston, IL, USA

Takashi Kanbayashi

Department of Neuropsychiatry, Akita University School of Medicine, Akita, Japan

Jaakko Kaprio

Dept. of Public Health, University of Helsinki, Finland

Andrew Kasarskis

Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, NY, USA

Leila Kheirandish-Gozal

Pediatric Sleep Medicine and Pediatric Pulmonology, Department of Pediatrics, Comer Children's Hospital, Pritzker School of Medicine, The University of Chicago, Chicago, IL, USA

RodaRani Konadhode

Ralph H. Johnson VA and Medical University of South Carolina, Charleston, SC, USA

Michael Lazarus

International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Japan

Meng Liu

Ralph H. Johnson VA and Medical University of South Carolina, Charleston, SC, USA

Michael March

The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, and Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA

Mark F. Mehler

Director, Institute for Brain Disorders and Neural Regeneration and Chair, The Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, New York, NY, USA

Keivan Kaveh Moghadam

DIBINEM, Alma Mater University of Bologna – IRCCS Insituto delle Scienze Neurologiche, Bologna, Italy

Valérie Mongrain

Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal; Department of Psychiatry, Université de Montréal, Canada

Charles M. Morin

Ecole de Psychologie, Université Laval, Quebec City, Quebec, Canada

Benjamin M. Neale

Analytical and Translational Genetics Unit, Massachusetts General Hospital, The Broad Institute, Boston, MA, USA

Seiji Nishino

Sleep & Circadian Neurobiology Laboratory, Stanford University School of Medicine, Palo Alto, CA, USA

Allan I. Pack

Center for Sleep and Circadian Neurobiology, University of Pennsylvania and Division of Sleep Medicine, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA

Dheeraj Pelluru

Ralph H. Johnson VA and Medical University of South Carolina, Charleston, SC, USA

Rosa Peraita-Adrados

Sleep Disorders and Epilepsy Unit – Clinical Neurophysiology Service, University General Hospital Gregorio Maranon, Madrid, Spain

Giuseppe Plazzi

DIBINEM, Alma Mater University of Bologna – IRCCS Insituto delle Scienze Neurologiche, Bologna, Italy

David A. Prober

Division of Biology, California Institute of Technology, Pasadena, CA, USA

Louis J. Ptáček

Department of Neurology, University of California San Francisco and Howard Hughes Medical Institute, San Francisco, CA, USA

Irfan A. Qureshi

Assistant Professor, The Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, New York, NY, USA

David M. Raizen

Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA

John J. Renger

Neuroscience Department, Merck Research Laboratories, West Point, PA, USA

Till Roenneberg

Institute for Medical Psychology, Centre for Chronobiology, Medical Faculty, Ludwig-Maximilians-University, Munich, Germany

Elizabeth J. Rossin

Analytical and Translational Genetics Unit, Massachusetts General Hospital, The Broad Institute, Boston, MA, USA

Takeshi Sakurai

Department of Molecular Neuroscience and Integrative Physiology, Faculty of Medicine, Kanazawa University, Kanazawa, Ishikawa, Japan

Paul Salin

Team SLEEP, Centre de Recherche en Neuroscience de Lyon, Université Claude Bernard, Lyon, France

Karen D. Schilli

Missouri University of Science and Technology, Department of Biological Sciences, Rolla, MO, USA

Eva C. Schulte

Neurologische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München and Institut für Humangenetik, Helmholtz Zentrum München, Munich, Germany

Laurent Seugnet

Team Integrated Physiology of Brain Arousal Systems, Centre de Recherche en Neuroscience de Lyon, Université Claude Bernard, Lyon, France

Paul J. Shaw

Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO, USA

Priyattam J. Shiromani

Ralph H. Johnson VA and Medical University of South Carolina, Charleston, SC, USA

Patrick Sleiman

The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, and Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA

Mehdi Tafti

Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland

Joseph S. Takahashi

Department of Neuroscience, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA

Matthew S. Thimgan

Missouri University of Science and Technology, Department of Biological Sciences, Rolla, MO, USA

Katsushi Tokunaga

Department of Human Genetics, Graduate School of Medicine, University of Tokyo, Tokyo, Japan

Giulio Tononi

Department of Psychiatry, University of Wisconsin/ Madison, Madison, WI, USA

Fred W. Turek

Center for Sleep and Circadian Biology, Northwestern University, Evanston, IL, USA

Yoshihiro Urade

International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Japan

Hans P.A. Van Dongen

Sleep and Performance Research Center, Washington State University, Spokane, WA, USA

Juliane Winkelmann

Neurologische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, Institut für Humangenetik, Helmholtz Zentrum München, and Institut für Humangenetik, Klinikum rechts der Isar, Technische Universität München, Munich, Germany

Christopher J. Winrow

Neuroscience Department, Merck Research Laboratories, West Point, PA, USA

Abbreviations

5hmC	5-hydroxymethylated cytosine	CPAP	continuous positive airway pressure
5-HT	serotonin	CR	constant routine
5mC	5-methylcytosine	CRB	CREB-binding protein
AAV	adeno-associated viral	CREB	cAMP response element-binding protein
aCGH	array comparative genomic hybridization	CRSD	circadian rhythm sleep disorder
Ach	acetylcholine	CSF	cerebrospinal fluid
AD	Alzheimer's disease	DA	dopamine
ADAR	adenosine deaminase acting on RNA	DAG	diacylglycerol
ADCA-	autosomal dominant cerebellar ataxia,	DAT	Dopamine Active Transporter
DN	deafness and narcolepsy	DLMO	dim-light melatonin onset
ADHD	attention deficit hyperactivity disorder	DNMTs	DNA methyltransferases
ADNFLE	autosomal dominant NFLE	DO	Diversity Outbred
AgRP	agouti-related protein	DORA	dual orexin receptor antagonist
AHI	apnea hypoxia index	Dox	doxycycline
AID	activation-induced deaminase	DREADDs	Designer Receptors Exclusively Activated by
AIL	advanced intercrossed line		Designer Drugs
AMP	adenosine monophosphate	DRN	dorsal raphe nuclei
AMPK	AMP kinase	DSIP	delta sleep inducing peptide
ANOVA	analysis of variance	DSPD	delayed sleep phase disorder
APOBEC	apolipoprotein B editing catalytic subunit	DSPS	delayed sleep phase syndrome
	(enzymes)	DZ	dizygotic
ApoE	apolipoprotein E	EDS	excessive daytime sleepiness
APS	aversive phototaxic suppression	EEG	electroencephalogram/graphic
ARAS	ascending reticular activating system	EGF	epidermal growth factor
AS	Angelman syndrome	EGFP	epidermal growth factor protein
ASM	anterior superior medial	EGFR	epidermal growth factor receptor
ASO	alpha-synuclein overexpressing	EHS	essential hypersomnia
ATP	adenosine triphosphate	EMG	electromyography
AVP	arginine vasopressin	EMS	ethyl methane sulfonate
BAC	bacterial artificial chromosome	endo-	endogenous short-interfering RNAs
BDNF	brain-derived neurotrophic factor	siRNAs	
BF	basal forebrain	ENW	episodic nocturnal wanderings
bHLH	basic helix-loop-helix	EPAC	exchange proteins activated by cAMP
BLPD	borderline-personality disorder	eQTL	expression QTL
BMI	body mass index	ERG	ether-a-go-go related
BNST	bed nucleus of the stria terminalis	ERK	extracellular signal-regulated kinase
BPD	bipolar affective disorder	FABP	fatty acid binding proteins
cAMP	cyclic adenosine monophosphate	FASPD	familial advanced sleep phase disorder
CBT	core body temperature	FASPS	familial advanced sleep phase syndrome
CC	collaborative cross	FB	fan-shaped body
CCSGs	candidate causal sleep genes	FDR	false discovery rate
cGMP	cyclic guanosine monophosphate	FFA	free fatty acid
CiRC	circadian integrated response characteristic	FFI	fatal familial insomnia
CLS	Coffin Lowry syndrome	FFT	fast Fourier transform
cM	centiMorgan	FNSS	familial natural short sleep
CNS	central nervous system	GA	GFP-Aequorin
CNV	copy number variant	GABA	gamma-aminobutyric acid
COX	Cyclooxygenase	GAD	generalized anxiety disorder
CPA	cyclopentyladenosine	GDGF	glial-derived growth factor

CEAD	Clial Fibrillams Asidia Duatain	NIA	mana duamanai a
GFAP GFP	Glial Fibrillary Acidic Protein	NA NAc	noradrenergic nucleus accumbens
GH	green fluorescent protein growth hormone	NADPH	nicotinamide adenine dinucleotide
GHRH	growth hormone releasing hormone	NADIII	phosphate
GPI	glycosylphosphatidylinositol	NAT	natural antisense transcript
GRE	glucocorticoid responsive element	ncRNA	non-coding RNA
GWAS	genome-wide association study	ND	Norrie disease
HAT	histone acetyltransferase	NE	norepinephrine
Hcrt	hypocretin	NFLE	nocturnal frontal lobe epilepsy
Hcrt/ox	hypocretin/orexin	NMDA	N-Methyl-D-aspartic acid
HD	Huntington's disease	NMO	neuromyelitis optica
HDAC	histone deacetylase	NPC	Niemann-Pick disease, type C
HDC	Histidine decarboxylase	NPD	nocturnal paroxysmal dystonia
HLA	Human Leukocyte Antigen System	NPS	neuropeptide S
HMDP	hybrid mouse diversity panel	NPY	neuropeptide Y
H-PGDS	hematopoietic PGDS	NREM	non-rapid eye movement
HPLC-	high-performance liquid chromatography-	NSAID	non-steroidal anti-inflammatory drugs
MS/MS	coupled tandem mass spectrometry	NSS	natural short sleeper
HS	heterogeneous stocks	OCD	obsessive-compulsive disorder
HSF	heat shock factor	OMIM	Online Mendelian Inheritance in Man
i.c.v.	intracerebroventricular	OSA	obstructive sleep apnea
i.p.	intraperitoneal	OSAS	obstructive sleep apnea syndrome
IBD	identical by descent	PA	paroxysmal arousals
IBS ICV	identity by state intracerebroventricular	PANDAS	pediatric autoimmune neuropsychiatric
IEG		PAS	disorders associated with Streptococcus PER-ARNT-SIM
IMM	immediate early genes intermediate and medium mesopallium	PBMC	peripheral blood mononuclear cell
IP3	inositol trisphosphate	PCA	principle components analysis
IRLSSG	International RLS Study Group	PCR	polymerase chain reaction
ISAC	Icelandic Sleep Apnea Cohort	PD	Parkinson's disease
KLS	Kleine-Levin syndrome	PDF	pigment dispersing factor
КО	knockout	PG	prostaglandin
LC	locus coeruleus	PGDS	PGD synthase
LD	linkage disequilibrium	PH	posterior hypothalamus
LDT	laterodorsal tegmental	PHD	plant homeodomain
LFP	local field potential	PI	pars intercerebralis
LHA	lateral hypothalamus	piRNAs	PIWI-interacting RNAs
LNvs	ventral lateral neurons	PKA	protein kinase A
LOD	logarithm of odds	PKG	protein kinase G
L-PGDS	lipocalin-type PGDS	PLM	periodic limb movement
LTM	long-term memories	PLMS	periodic limb movements in sleep
LTP	long-term potentiation	POA	preoptic area
MB MBD	mushroom body methyl-CpG-binding domain	PPARs PPT	peroxisome proliferator-activated receptors pedunculopontine tegmental (nucleus)
MBT	1, 1	nn c	1
MCH	malignant brain tumor Melanin-Concentrating Hormone	PRC PSG	phase response curve polysomnography
MCTQ	Munich ChronoType Questionnaire	PTM	post-translational modification
MD1	myotonic dystrophy type 1	PTSD	post-traumatic stress disorder
MDD	major depressive disorder	PWS	Prader–Willi syndrome
mEPSCs	miniature excitatory postsynaptic currents	QC	quality control
MEQ	morningness-eveningness questionnaire	QTL	quantitative trait locus
MeS	metabolic syndrome	RA	Robust nucleus of the Arcopallium
mGluR	metabotropic glutamate 5 receptors	RBP	RNA binding protein
MHC	Major Histocompatibility Complex	RDI	respiratory disturbance index
miRNAs	microRNAs	RDL	Resistance to Dieldrin
MOG	myelin oligodendrocyte glycoprotein	REM	rapid eye movement
MRH	menstrual-related hypersomnia	RI	recombinant inbred
MSLT	multiple sleep latency test	RISC	RNA-induced silencing complex
MZ	monozygotic	RLS	restless leg syndrome

RNAi	RNA interference	SRIF	Somatostatin
RORE	Retinoic-acid-related Orphan receptor	SSRIs	serotonin-specific reuptake inhibitors
	Response Element	SWA	slow-wave activity
RSD	REM sleep deprivation	SWR	sharp-wave ripple
SAD	seasonal affective disorder	SWS	slow-wave sleep
SAGIC	Sleep Apnea Genetics International	TALEN	TAL-effector nuclease
	Consortium	TCRa	T-cell receptor alpha
SAM	S-adenosyl methionine	TDT	transmission disequilibrium test
SCF	Skp1-Cullin-F-box	TET	Ten-Eleven Translocation
SCN	suprachiasmatic nucleus	tet.O	tet-operator
SDB	sleep-disordered breathing	TH	tyrosine hydroxylase
SDP	strain distribution pattern	TIB	time in bed
sfo	step-function-opsin	TLR4	toll-like receptor 4
SHY	synaptic homeostasis hypothesis	TMN	tuberomammilary nucleus
SMS	Smith-Magenis syndrome	TRP	transient receptor potential
SNARE	soluble N-ethylmaleimide-sensitive fusion	TSD	total sleep deprivation
	protein attachment protein receptor	tTA	tetracycline transactivator
snoRNAs	small nucleolar RNAs	UAS	Upstream Activation Sequence
SNP	single nucleotide polymorphism	UTR	untranslated region
SNRIs	serotonin/noradrenaline reuptake	VLPO	ventrolateral preoptic area
	inhibitors	VNTR	variable-number tandem repeats
SNV	single nucleotide variant	VTA	ventral tegmental area
SOD2	superoxide dismutase 2	\mathbf{WT}	wild-type
SORA	single orexin receptor antagonist	XCI	X chromosome inactivation
SOREMP	sleep onset REM period	ZFN	zinc finger nuclease

Contents

Foreword vii
Preface ix
List of contributors xi
List of abbreviations xv

Section 1: General principles of genetics and genomics

- Linkage and associations 1
 Elizabeth J. Rossin and Benjamin M. Neale
- Methods in complex trait analysis: mapping the genetic basis of sleep using model organisms 13
 Amelie Baud and Jonathan Flint
- Genome-wide association study (GWAS) approaches to sleep phenotypes 22 Patrick Sleiman, Michael March, and Hakon Hakonarson

Section 2: Genetics of sleep and circadian rhythms

- Genetic epidemiology of sleep and sleep disorders 33
 Christer Hublin and Jaakko Kaprio
- Drosophila model systems for genetic sleep research 43
 Stephane Dissel and Paul J. Shaw
- Caenorhabditis elegans and zebrafish in sleep research 54
 David A. Prober and David M. Raizen
- Optogenetic control of arousal neurons 66
 Antoine Adamantidis, Matthew E. Carter, and Luis de Lecea
- Prostaglandin D₂ in the regulation of sleep 73
 Yoshihiro Urade and Michael Lazarus

- Astroglial regulation of sleep 84 Marcos G. Frank
- 10. The role of metabolic genes in sleep regulation 91Matthew S. Thimgan and Karen D. Schilli
- 11. A systems biology approach for uncovering the genetic landscape for multiple sleep– wake traits 104 Peng Jiang, Andrew Kasarskis, Christopher J. Winrow, John J. Renger, and Fred W. Turek
- Genetic control of the circadian pacemaker 119
 Ethan Buhr and Joseph S. Takahashi
- 13. Epigenetic basis of circadian rhythms and sleep disorders 127Irfan A. Qureshi and Mark F. Mehler

Section 3: Sleep physiology and homeostasis

- 14. Genetics of sleep and EEG 139 Thomas Curie and Mehdi Tafti
- 15. Genetic interaction between circadian and homeostatic regulation of sleep 147
 Valérie Mongrain and Paul Franken
- 16. Genetic approaches to understanding circadian entrainment 162Till Roenneberg and Karla V. Allebrandt
- 17. Animal models for cognitive deficits induced by sleep deprivation 171 Laurent Seugnet and Paul Salin

- Individual differences in sleep duration and responses to sleep loss 189
 Devon A. Grant and Hans P.A. Van Dongen
- Clock polymorphisms associated with human diurnal preference 197
 Simon N. Archer and Derk-Jan Dijk
- 20. **Sleep and long-term memory storage** 208 Jennifer H.K. Choi and Ted Abel
- 21. **Sleep and synaptic homeostasis** 219 Chiara Cirelli and Giulio Tononi

Section 4: Insomnias

Heritability and genetic factors in chronic insomnia 227Yves Dauvilliers and Charles M. Morin

Section 5: Narcolepsy and hypersomnias

- HLA and narcolepsy 235
 Katsushi Tokunaga and Makoto Honda
- 24. **Orexin (hypocretin) and narcolepsy** 242 Takeshi Sakurai and Seiji Nishino
- 25. Genome-wide association studies in narcolepsy 254Hyun Hor
- 26. Genetic disorders producing symptomatic narcolepsy 260 Seiji Nishino and Takashi Kanbayashi
- Genetics of recurrent hypersomnia 272
 Michel Billiard, Rosa Peraita-Adrados, and Mehdi Tafti

Section 6: Sleep-related breathing disorders

28. Linkage and candidate gene studies of obstructive sleep apnea 279
Annette C. Fedson, Thorarinn Gislason, and Allan I. Pack

Genomic variants and genotype-phenotype interactions in pediatric sleep-related breathing disorders 302
 Leila Kheirandish-Gozal and David Gozal

Section 7: Circadian rhythm sleep disorders

- 30. **Genetics of familial advanced sleep phase** 313 S.Y. Christin Chong, Louis J. Ptáček, and Ying-Hui Fu
- 31. Delayed sleep phase disorder, circadian genes, sleep homeostasis and light sensitivity 327
 Simon N. Archer and Derk-Jan Dijk

Section 8: Parasomnias and sleep-related movement disorders

32. Family and genome-wide association studies of restless legs syndrome 335Eva C. Schulte and Juliane Winkelmann

Section 9: Psychiatric and medical disorders

- 33. Circadian clock genes and psychiatric disorders 351Marc Cuesta, Nicolas Cermakian, and Diane B. Boivin
- 34. Genetics of autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) 365 Keivan Kaveh Moghadam and Giuseppe Plazzi

Section 10: Medication effects

35. **Gene therapy for sleep disorders** 375 Dheeraj Pelluru, RodaRani Konadhode, Carlos Blanco-Centurion, Meng Liu, and Priyattam J. Shiromani

Index 381

Color plate section is between pp. 206-207.

General principles of genetics and genomics

Linkage and associations

Elizabeth J. Rossin and Benjamin M. Neale

Introduction

Human genetics is one of the most promising approaches to identifying the cellular underpinnings of human diseases and traits. For diseases whose etiology is largely unknown, identifying genes that contribute risk can lead to novel biological insights and potentially reveal proteins and pathways to target with therapeutics. Historically, the search for such genetic variation that influences phenotype has been particularly successful in rare genetic disorders, termed Mendelian disease, that are caused by severe mutations in DNA: classic examples of such diseases include hemochromatosis, cystic fibrosis and phenylketonuria [1]. For these diseases, DNA changes in particular genes lead to deficient or altered protein that in turn results in a cascade of physiological outcomes, ultimately culminating in the medical sequelae that define the disease. Not only have these findings helped elucidate the biological pathways important to these phenotypes, but also understanding the damaged cellular processes has been proven to be relevant to patients' medical treatment. A primary goal of human genetics is to understand disease biology and ultimately aid in the identification of novel therapeutic design.

The application of genetics to severe rare diseases that follow clear inheritance patterns in families has led to the successful identification of the root cause in many instances. These Mendelian diseases are almost completely caused by genetic factors, which explains the success of genetics to unequivocally determine the cause. In contrast, complex traits are characterized by the combination of many genetic and environmental factors that together create the phenotype. An additional consequence of this complex trait architecture is that the familial clustering of the trait does not follow a clear and predictable inheritance pattern.

For most complex phenotypes, we do not understand the bulk of the underlying pathophysiology, in spite of the fact that many of these traits are clearly heritable. Since the nineteenth century, scientists and physicians have studied twins and families for complex phenotypes and identified clear evidence of heritability. The fact that traits tend to run in families and that more genetically similar family members tend to be more phenotypically similar provides empirical support of the genetic hypothesis. Consequently, the identification of genetic variants is possible and provides the opportunity to gain insight into the biological processes relevant to human disease. Twin and family studies in sleep phenotypes have revealed significant heritability; the earliest observation of sleep phenotypes being heritable was made in 1937 when Geyer reported higher sleep profile concordance in monozygotic twins than dizogotic twins [2].

As with many traits, the majority of sleep disorders and sleep-related traits are complex phenotypes. However, there are some examples of familial diseases that present with disordered sleep as either a primary or secondary finding. Phenotypes in both these categories include diseases such as restless leg syndrome (RLS) and narcolepsy-cataplexy as well as quantitative traits in normal individuals including duration and quality of sleep. A number of instances of sleep disorders segregating in a Mendelian fashion within large families have been documented, but there are also well-established studies of heritability of sleep and sleep disorders as complex traits as discussed later in this chapter [3–9].

Identifying genes for heritable Mendelian and complex traits alike requires genetic mapping, i.e. the identification and localization of genes that underlie heritable phenotypes. Genetic mapping is accomplished by correlating DNA variation with phenotype.

The Genetic Basis of Sleep and Sleep Disorders, ed. Paul Shaw, Mehdi Tafti and Michael Thorpy. Published by Cambridge University Press. © Cambridge University Press 2013.