FUNDAMENTAL PROGRAMMING
WITH PASCAL

J. DENBIGH STARKEY
ROCKFORD J. ROSS

Fundamental Programming
With Pascal

J. Denbigh Starkey
Washington State University

Rockford J. Ross

Montana State University

West Publishing Company
St. Paul ® New York ¢ Los Angeles ® San Francisco

Cover photography by Michel Tcherevkoff for Alleghany.

COPYRIGHT ¢ 1984 By WEST PUBLISHING CO.
50 West Kellogg Boulevard
PO. Box 43526
St. Paul, Minnesota 55165

All rights reserved
Printed in the United States of America
Library of Congress Cataloging in Publication Data

Starkey,]. Denbigh.
Fundamental programming with Pascal.

Bibliography: p.

Includes index.

1. PASCAL (Computer program language) I. Ross,
Rockford. II. Title.
QA76.73.P2573 1984 001.04'24 84-2244
ISBN 0-314-77806-3

Fundamental Programming
With Pascal

To Susan
and
To Heidi, Jason, and Jennifer

Preface

Our purpose in writing this book was to present an introduction to programming in true
textbook form. What we wanted was a textbook that could be used by students and in-
structors alike with the confidence that the issues fundamental to programming were
covered in a thorough and integrated fashion. We wanted to ensure that students were
not left dangling by incomplete discussions or topics devoid of application, and that in-
structors would not be forced to refer to other sources to fill in gaps left in the book.
What we did not want was yet another Pascal programming language manual (many fine
Pascal manuals already exist) or a book that only discussed the fundamental issues of
programming in isolated sections without integrating these concepts into the everyday
development of programs. Learning the details of a programming language like Pascal is
relatively easy; the challenging part is learning how to program.

In striving towards our goals we have held to one basic tenet: students learn best by
example. Each new programming concept introduced is discussed as it is needed within
the framework of a complete top-down development of a program. Related issues, such
as program efficiency and correctness, are integrated within this discussion rather than
being relegated to isolated sections. Thus, this is a large book, not because it encompasses
so much new material, but because of the novel and thorough presentation of the fun-
damental topics.

Xix

XX

PREFACE

PHILOSOPHY

In determining the content of the book we had a definite pedagogical model in
mind. This model stemmed from the startling observation that when students
were asked to design a substantial program independently, many would re-
turn with a program consisting primarily of one or two large routines with lit-
tle modularity — programs that were difficult to read and difficult to modify.
Furthermore, when asked simple questions about the efficiency or correctness
of their programs, the students were often at a loss for answers. This was true
in spite of our efforts at teaching structured design, correctness, and efficien-
cy of programs. What had gone wrong? The answer was surprisingly simple:
we weren't practicing what we preached. Traditional textbooks used in the in-
troductory courses either did not cover these topics well or they covered them
in isolated sections of the text. Furthermore, procedures and functions were
normally introduced late in these textbooks, almost as an afterthought, as the
“right way”’ to program. Students were mistakenly led to believe that
procedures and functions were difficult topics of more bother than they were
worth; it's no wonder that they were avoiding their use later. In designing our
book, then, our philosophy was to introduce programming in a way that
would reinforce proper programming style and habits from the start. We do
this as follows:

(1) Case Studies. The central pedagogical tool we use is the case study. These
are programming problems for which complete, working programs are de-
signed in a top-down, structured fashion as new programming concepts are
introduced. The problem of exploring new concepts in isolation from practical
experience is thus avoided. In all there are 51 complete case studies in the

book.

(2) Use of a Pseudolanguage. The solutions to the case studies are developed
in a structured, top-down fashion in a simple pseudolanguage. This allows us
to concentrate on programming rather than the distracting details of Pascal as
the programs are developed. Students should learn that program development
in a pseudolanguage is a completely separate process (now widely practiced in
industry) from the implementation of the resulting program in some particu-
lar programming language (in this case Pascal). Each of the programs we de-
sign in the pseudolanguage is translated into a complete, working Pascal pro-
gram in a later section where the new details of the Pascal language can be dis-
cussed separately from the problems involved in the program design.

(3) Immediate Introduction of Procedures and Functions. From the first case
study on we teach that programs are collections of short, well-defined
procedures and functions, which are organized and called from an initial
procedure (main program). The crucial concepts of procedures, functions, pa-
rameters, and modular program design are thus ingrained into the habits and
practice of students from the beginning. Students learn these topics without
problem, and their later programming practices are greatly enhanced as a re-
sult.

(4) Inclusion of Program Correctness. As part of each case study we include
an integrated discussion of program correctness. This starts out quite simply
with the early case studies but eventually includes the notions of a program

PREFACE

walkthrough, semi-formal verification steps (particularly for loops), program
testing, choosing proper test data, robustness, and debugging techniques.
Students receive a practical knowledge of the concepts of program veri-
fication and are provided a sound basis for advanced courses on the topic.

(5) Integrated Discussion of Program Efficiency. The execution time efficien-
cy (time complexity) and storage space requirements (space complexity) of the
programs are discussed for each relevant case study. Time complexity is de-
termined by doing a count of the number of statements executed, and space
complexity is determined by counting the number of storage cells used. These
simple, intuitive approaches are accurate and practical. Students continuing
on in computer science will have a basis for advanced study of these topics,
while those terminating after this class will understand practical methods for
determining program efficiency.

BOOK ORGANIZATION

All chapters except the first follow a specific format designed to implement
our philosophy. Each has four major sections, Getting Acquainted, In Retro-
spect, The Challenge, and Pascal Implementation. In the Getting Acquainted
section, simple case studies introducing the new programming concepts of the
chapter are studied. All of these case studies should be covered because the
procedures and functions developed there are often used in later case studies.
In Retrospect summarizes these new concepts and provides a place to turn to
for review. The Challenge presents more challenging case studies involving
the new concepts of the chapter. The Pascal Implementation section mirrors
the previous sections exactly in translating the pseudolanguage programs of
the case studies into Pascal. All Pascal programs have been written to conform
to the ISO standard. Appendix A, Pascal Reference, provides a concise refer-
ence manual for ISO Pascal. To help acquaint students with this language ref-
erence appendix, syntax diagrams from the appendix should be presented in
class as new Pascal statements are introduced. Eight groups of exercises are in-
tegrated into each chapter, and answers to some of these are found in appen-
dix B, Answers to Selected Exercises.

The first chapter of the text is different from the other chapters; it describ-
es a model computer and the simple operations that a computer can perform,
providing the motivation for the rest of the book by answering the question,
“Why must we write programs?”’. It was carefully written so that students
could read it on their own during the first week of class as the instructor
tended to other matters (such as describing how to use the computer). A com-
plete, simple Pascal program is given at the end of the exercises, which the
students can type in and run as their first assignment to help acquaint them
with their computer terminal and text editor.

We hope that you will find this book as easy and pleasant to use as we
have. However, you will probably find parts that you dislike or disagree with.
We would be delighted to receive any comments you may have, and correc-
tions will be gratefully accepted and included in future printings or editions.

IN GRATITUDE

Those to whom we are most indebted for the form and content of this book
are the thousands of students in the introductory programming course at

XXi

xxii

PREFACE

Washington' State University over the past two years. Their questions, com-
ments, sharp-eyed ability to catch errors, and enthusiasm for the material kept
us going. Also to be thanked are the many reviewers who helped us through
various stages of the book:

Gabriel Barta Rachelle Heller

(University of New Hampshire) (University of Maryland)

Rodney M. Bates Leon Levine

(Kansas State University) (University of California, Los Angeles)
Leland L. Beck Gene Mahalko

(San Diego State University) (University of North Dakota)

Don Cartlidge Lawrence H. Miller

(New Mexico State University) (University of California, Los Angeles)
Cecelia R. Daly Ralph Moore

(University of Nebraska) (Modesto Junior College, California)
Nancy Duffrin Keith R. Pierce

(SUNY at Stony Brook) (University of Minnesota)

Arthur C. Fleck Alan L. Schwartz

(University of lowa) (University of Missouri, St. Louis)
Tamar E. Granor Robert F. Simmons

(University of Pennsylvania) (University of Texas, Austin)

James L. Hein Stephen F. Weiss

(Portland State University) (University of North Carolina, Chapel Hill)

Their careful evaluations and widespread support for the book were indeed
helpful. The many instructors who labored in front of the classes with rough
drafts of the book receive our appreciation, too.

Although many helped us along the way, there are others whose help was
particularly important. Roger Hirsch first interested us in writing the book,
without his encouragement we might never have started. Shirley Farmer was
unflagging in her typing of the manuscript (even when her eyes said ““Oh no,
not chapter 4 again!”’) We also thank Mike Langston, whose enthusiasm for
the book and personal friendship as a colleague did not temper his
constructive criticism of our efforts. Then there are all those at West
Publishing Company, who probably never saw so many deadlines come and
go before and yet continued to provide the necessary support to keep the
project moving. Editor Pete Marshall, production editor Deanna Quinn, and
marketing coordinator Reneé Grevious worked so intensely with us that they
now seem more like friends than business associates. We also thank Pamela
McMurry for carefully copyediting our manuscript; she not only read for
syntactic errors but for a true understanding of the material.

Then there are the few without whose support the project definitely
would have been doomed: our families. To those who missed us on family
occasions, holidays, and weekends, yet continued to stand by as the project
seemed to extend indefinitely — well, what can we say? Without you there
would be no book.

J. Denbigh Starkey
Rockford J. Ross

To the Student

This book has been designed with you in mind. We have given numerous ex-
amples of all important programming concepts and provided exercises to rein-
force your learning. If you study this material carefully you will be well
prepared for advanced courses in computer science; if this is the only course
that you plan to take, you will have a sound understanding of the program-
ming process to apply in later life. For example, it may well be that the most
useful things that a future engineer learns from this book are program cor-
rectness and efficiency if he or she is later involved in projects where the suc-
cessful design of a program by members of a team is crucial, or where the
speed of a particular software component of a system is important. Similarly,
business students may later find that they are responsible for decisions about
the purchase or use of programs, and a practical, working knowledge of the
concepts of program design, efficiency, and correctness may be far more im-
portant than actual programming skills. In short, these topics are of concern
not only to computer professionals but to all who will be involved with com-
puters in the future.

To use this book most effectively, you should read the chapters in the or-
der given. The first chapter answers the question, “Why must computers be
programmed?”’ You can read it as you are becoming used to the actual com-
puter you are using; this chapter contains no programming assignments. In
subsequent chapters you should study each of the case studies in the Getting
Acquainted sections in succession. The order is important because later case
studies build on earlier ones. After you understand a case study you should
turn to the corresponding Pascal section to see how the program developed in
the case study is translated into Pascal. This process of learning the design of a
program and then turning to the Pascal section to see how the program is ac-
tually written in Pascal is one you will repeat often. The In Retrospect section
of each chapter is especially for you. You should read it carefully and then use
it as a reference whenever you need to review a particular topic. The
Challenge section contains advanced case studies exploring the new topics of
the chapter. Later introductory case studies do not depend on previous
Challenge case studies, but the Challenge case studies give you a more in-
timate look at the programming process. You should also learn to use appen-
dix A, Pascal Reference, as quickly as possible. It gives a detailed but concise
description of Pascal, and it should be used whenever you want to review fea-
tures of the Pascal programming language.

xXiii

XXiv

TO THE STUDENT

Whether you are a computer science student or a student from another
discipline we have designed this book to be useful to you now and later as a
reference. And one warning: if you have learned a programming language
previously on your own, try to forget what you learned. We have seen many
sad cases of students coming in with previous programming experience who
start well but end up doing poorly because they never shook their previously
learned bad habits! Using this book you will not only learn Pascal, you will
also learn to be a good programmer.

Contents

PREFACE «xix
TO THE STUDENT xxiii

CHAPTER 1 GETTING READY 1
1.1 BACKGROUND 2

1.2 THE MODEL COMPUTER 3
The Processor ~ 4/The Store ~ 8/The Processor — Comparison
Unit 19/The Input and Output Devices ~ 30/Summary of the
Model Computer 38

1.3 THE PROGRAMMING PROCESS 38
Programs 38/Functions and Procedures = 39/The Model
Programming Language 42

1.4 EXERCISES 44
Review Exercises 44

1.5 PROGRAM IMPLEMENTATION IN PASCAL 46

The VAR Statement and Pascal Variables = 46/Assignment Statements

in Pascal 49/Inputting Values in Pascal — The READ
Statement 55/Outputting Values in Pascal — The WRITELN
Statement 56/An Example Pascal Procedure 56

1.6 PASCAL EXERCISES 57

CHAPTER 2 SIMPLE PROGRAMS 61

2.1 GETTING ACQUAINTED 62

Case Study 2.1 Compute the Average of Three Numbers 62
First Solution — A Simple Initial Procedure 62/Second
Solution — Use a Simple Function 64/Correctness 69/
Summary — Case Study 2.1 74

Case Study 2.2 Area of a Rectangle 75
The Solution — A Function with In Only Parameters 75/
Correctness 77/Summary — Case Study 2.2 79

Case Study 2.3 Swap Two Values 79
The Solution — Procedure Swap With In Out Parameters 79/
Correctness ~ 83/Summary — Case Study 2.3 85

vii

viii

CONTENTS

2.2 IN RETROSPECT 87
Top-Down Program Design ~ 87/Functions and Procedures 88/
Program Structure ~ 90/Parameters ~ 91/Local Variables 101/
Program Verification =~ 101/Batch vs. Interactive Programming 102

2.3 WARMUP EXERCISES 103
For Review 103/A Deeper Look 104/To Program 106

2.4 THE CHALLENGE 107

Case Study 2.4 Computing Simple Interest 107
The Solution — A Function to Compute Simple Interest 107/
Summary — Case Study 2.4 109

Case Study 2.5 Computing Compound Interest 109
The Solution — A Function to Compute Compound Interest 109/
Summary — Case Study 2.5 110

Case Study 2.6 Compute the Area of a Trapezoid 111
The Solution — Use Function Rectangle of Case Study 2.2 111/
Improved Solution — Computing the Area of a Trapezoid
Directly 113/Summary — Case Study 2.6 113

2.5 WORKING OUT 113

2.6 PASCAL IMPLEMENTATION 115

Getting Acquainted With Pascal 116

Case Study 2.1 in Pascal 116

Case Study 2.2 in Pascal 120

Case Study 2.3 in Pascal 122

Pascal in Retrospect 123
Pascal Program Structure 124/Pascal Functions 124/Pascal
Procedures 126/Pascal Parameters 127/Integer and Real
Numbers in Pascal =~ 127/Testing Pascal Programs 129/Pascal
Summary 129

Warming Up to Pascal 129
For Review 129/A Deeper Look 130/To Program 130

The Challenge in Pascal 131

Case Study 2.4 in Pascal 131

Case Study 2.5 in Pascal 132

Case Study 2.6 in Pascal 133

Working Out in Pascal 134

CHAPTER 3 MAKING DECISIONS 137

3.1 GETTING ACQUAINTED 138

Case Study 3.1 Find the Larger of Two Values 138
Correctness 139/Summary — Case Study 3.1 140

Case Study 3.2 Compute the Largest of Three Values 141
First Solution — Nested If-Then-Else 141/Correctness 143/
Second Solution — Use of a Local Variable 145/Third
Solution — Use Compound Conditional Expression 145/Fourth
Solution — Use Function Maximum 147/Summary — Case
Study 3.2 149

Case Study 3.3 Sort Three Integers 149
The Solution — A Sorting Procedure 149/Correctness 151/
Summary — Case Study 3.3 152

3.2

3.3

3.4

3.5
3.6

CONTENTS

Case Study 3.4 Assigning Student Grades 152
First Solution — Nested If-Then-Else 153/Improved Solution —
If Statement with Elseif Clauses 154/Correctness 155/
Summary — Case Study 3.4 156

Case Study 3.5 Compute Ticket Costs 156
First Solution — If with Elseif Clauses 157/Improved Solution —
Case Statement 157/Correctness 159/Summary — Case
Study 3.5 160

IN RETROSPECT 160
The If Statement 161/Case Statement 164/Program
Correctness 166

WARMUP EXERCISES 168
For Review 168/A Deeper Look 170/To Program 171

THE CHALLENGE 172

Case Study 3.6 Factorial 172
The Solution — A Recursive Function 174/Correctness 175/
Summary — Case Study 3.6 186

Case Study 3.7 Fibonacci Numbers 187
The Solution — A Recursive Function 187/Summary — Case
Study 3.7 189

Case Study 3.8 Quadratic Equations 190
The Solution — Two Procedures 190/Correctness 195/
Summary — Case Study 3.8 196

WORKING OUT 197

PASCAL IMPLEMENTATION 198

Cetting Acquainted With Pascal 198

Case Study 3.1 in Pascal 199

Case Study 3.2in Pascal 200

Case Study 3.3 in Pascal 203

Case Study 3.4 in Pascal 204

Case Study 3.5in Pascal 205

Pascal in Retrospect 207
Compound Statements ~ 207/If-Then and If-Then Else 207/
Implementation of Elseif Clauses in Pascal =~ 210/The Pascal CASE
Statement 213/Controlling the Printing of Values in a WRITELN
Statement 216/Assertions in Pascal ~ 220/Portability 221

Warming Up to Pascal 221
For Review 221/A Deeper Look 223/To Program 224

The Challenge in Pascal 225

Case Study 3.6 in Pascal 225

Case Study 3.7 in Pascal 225

Case Study 3.8in Pascal 226

Working Out in Pascal 227

CHAPTER 4 ITERATION 229

4.1

GETTING ACQUAINTED 230
Case Study 4.1 Sum a Series of Integers 230
The Solution — A While Loop 230/Method | — Header
Value 231/Correctness 234/Method 2 — Trailer Value 237/

CONTENTS

4.2

4.3

4.4

4.5
4.6

Correctness 239/Method 3 — The Moredata Condition ~ 239/
Correctness 241/Efficiency 241/Summary — Case
Study 4.1 243

Case Study 4.2 Sum the Firstn Even Integers 244
The Solution — An Indexing Loop 244/Alternate Solution — An
Automatic Indexing Loop ~ 248/Correctness 250/
Efficiency ~ 251/Summary — Case Study 4.2 252

Case Study 4.3 Computing Average Scores 253
The Solution — While Moredata and Automatic Indexing
Loops 253/Correctness 256/Efficiency 256/Summary —
Case Study 4.3 257

Case Study 4.4 Accumulating Interest 257
The Solution — The General While Loop 257/An Alternative
Solution — The Until Loop ~ 260/Correctness 262/
Efficiency 262/Summary — Case Study 4.4 264

IN RETROSPECT 264
Loops 264/Common Loop Operations ~ 270/Program
Efficiency 272/Determining Loop Correctness 287

WARMUP EXERCISES 302
For Review 302/A Deeper Look 303/To Program 307

THE CHALLENGE 307
Case Study 4.5 Factorial Revisited 307
The Solution — A Loop 308/Correctness 309/
Efficiency ~ 310/Summary — Case Study 4.5 310
Case Study 4.6 Fibonacci Revisited 311
The Solution — A Loop 311/Correctness 313/
Efficiency ~ 313/Summary — Case Study 4.6 313

WORKING OUT 314

PASCAL IMPLEMENTATION 316

Getting Acquainted With Pascal 316

Case Study 4.1 in Pascal 316

Case Study 4.2 in Pascal 319

Case Study 4.3 in Pascal 320

Case Study 4.4 in Pascal 324

Pascal in Retrospect 326
The Pascal WHILE Loop 326/The Pascal REPEAT-UNTIL
Loop 328/The Pascal FOR Loop 329/More Pleasing
Output 330/WRITE and WRITELN 330/READ and
READLN 333/Function and Procedure Nesting ~ 337/The
FORWARD Statement 341/Global Variables 343

Warming Up to Pascal 347
For Review 347/A Deeper Look 348/To Program 349

The Challenge in Pascal 350

Case Study 4.5 in Pascal 350

Case Study 4.6 in Pascal 351

Working Out in Pascal 351

CONTENTS

CHAPTER 5 MAINTAINING SIMPLE L1515: ARRAYS OF ONE
DIMENSION 353

5.1 GETTING ACQUAINTED 354

Case Study 5.1 Printing a List Forwards and Backwards =~ 354
The Solution — 1-D Arrays ~ 355/Inputting Values into a 1-D Array
by the Header Method =~ 356/Printing a 1-D Array in Reverse
Order 359/Correctness 360/Inputting Values into a 1-D Array
by the Moredata Method ~ 365/Inputting Values into a 1-D Array by
the Trailer Method 368/Efficiency ~ 369/Summary — Case
Study 5.1 370

Case Study 5.2 Computing Temperature Statistics 371
The Solution — Arrays with Negative Bounds — 371/
Correctness 373/Efficiency ~ 373/Summary — Case
Study 5.2 374

Case Study 5.3 Computing Test Statistics 374
The Solution — Statistics on 1-D Arrays ~ 375/Correctness 380/
Efficiency ~ 382/Summary — Case Study 5.3 382

5.2 IN RETROSPECT 383
Simple Lists ~ 383/The 1-D Array 383

5.3 WARMUP EXERCISES 389
For Review 389/A Deeper Look 389/To Program 390

5.4 THE CHALLENGE 391

Case Study 5.4 Computing the Dot Product of Two Vectors 391
The Solution — 1-D Real Arrays ~ 391/Correctness 393/
Efficiency 393/Summary — Case Study 5.4 393

Case Study 5.5 Searching an Unordered List 393
The Solution — Sequential Search ~ 394/Correctness 397/
Efficiency ~ 398/Summary — Case Study 5.6 398

Case Study 5.6 Searching an Ordered List 399
First Solution — Sequential Search ~ 399/Second Solution —
Binary Search ~ 402/Correctness 404/Efficiency 406/
Summary — Case Study 5.6 407

Case Study 5.7 Sorting a List of Values 407
The Solution — Insertion Sort ~ 408/Correctness 414/
Efficiency 414/Summary — Case Study 5.7 416

Case Study 5.8 Sorting a List of Values Faster 416
The Solution — Quicksort ~ 417/Correctness 428/
Efficiency ~ 433/Summary — Case Study 5.8 436

5.5 WORKING OUT 436

5.6 PASCAL IMPLEMENTATION 438
Getting Acquainted With Pascal 438
Case Study 5.1in Pascal 438
Case Study 5.2 in Pascal 440
Case Study 5.3 in Pascal 442
Pascal in Retrospect 444
Direct 1-D Array Declarations ~ 444/Array TYPE

Xi

Xii

CONTENTS

Declarations 445/Arrays as Parameters ~ 445/Named Constants
in Pascal ~ 447/Dynamic Arrays in Pascal ~ 448
Warming Up to Pascal =~ 448
For Review 448/A Deeper Look 448/To Program 449
The Challenge in Pascal 450
Case Study 5.4 in Pascal 450
Case Study 5.5in Pascal 451
Case Study 5.6in Pascal 452
Case Study 5.7 in Pascal 454
Case Study 5.8 in Pascal 456
Working Out in Pascal 458

CHAPTER 6 CHARACTERDATA 459

6.1

6.2

6.3

6.4

6.5

GETTING ACQUAINTED 460

Case Study 6.1 Inputand Output of Strings 460
The Solution — String Variables ~ 460/Alternate Solution —
Character Variables and Concatenation with the Header
Method 463/Alternate Solution — The Moredata Method 467/
Alternate Solution — The Trailer Method 467/
Correctness 467/Efficiency ~ 468/Summary — Case
Study 6.1 468

Case Study 6.2 Counting Vowels 469
The Solution — Character Variables and the Case Statement ~ 469/
Correctness 471/Efficiency 471/Summary — Case
Study 6.2 471

Case Study 6.3 Reading and Printing a List of Names 471
The Solution — String Arrays ~ 472/Alternate Solution — Character
Variables and Concatenation 474/Correctness 475/
Efficiency 475/Summary — Case Study 6.3 475

IN RETROSPECT 476

Character Variables and Constants ~ 476/String Variables and
Constants 477/String Operations ~ 478/Input and Output of String
Data 480/String Comparisons 481/Efficiency of String Handling
Programs 482/Correctness of String Handling Programs 482

WARMUP EXERCISES 482
For Review 482/A Deeper Look 483/To Program 483

THE CHALLENGE 484

Case Study 6.4 Sorting Names 484
The Solution — Insertion Sort ~ 484/Correctness 485/
Efficiency 485/Summary — Case Study 6.4 485

Case Study 6.5 Bank Compression 486
The Solution — String and Character Manipulation 487/
Correctness 492/Efficiency 492/Summary — Case
Study 6.5 492

Case Study 6.6 A Simple Word Processor 493
The Solution — Text Manipulation 494/Correctness 498/
Efficiency ~ 498/Summary — Case Study 6.6 498

WORKING OUT 499

