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Advances in the
Multiphysics Analysis of Structures

K.J. Bathe

Massachusetts Institute of Technology
Cambridge MA

United States of America

Abstract

In this chapter, we survey the advances that we have recently accomplished for the
effective analysis of solids and structures, specifically for wave propagations and
transient solutions, the analysis of shells, improved stress calculations, the use of
interpolation covers, and the solution of the full Maxwell’s equations. The structures
may be subjected to complex fluid flows and electromagnetic effects. We briefly
give the theoretical developments for the formulations. a few illustrative solutions,
and conclude by mentioning some further exciting research challenges.

Keywords: finite elements, multiphysics, wave propagations, shells, large strains,
improvements of stresses, Maxwell’s equations, electromechanics, fluid flows.

1 Introduction

The analysis of solids and structures in multiphysics conditions has been given
increasing attention during the recent years [1]. A large number of problems
considered only a decade ago as very difficult to solve can now be analyzed with
relatively little computational effort. However, there are many problem areas where
significant advances are still needed for effective simulations. The objective in this
chapter is to briefly present some advances that we have recently accomplished. As
a result of space limitations, we mention only our books and papers and refer the
reader to the many additional references given therein.

When considering research achievements in the field, it is important to realize the
philosophy adopted by a research group in its research on computational methods.
Our philosophy — as pursued for about 40 vears now — is to focus on the
development of methods that are general, reliable and efficient, and advance the
current state of the art as practiced in industry and the sciences [1, 2]. We have not
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pursued research that is claimed to open up new avenues when it is clear that such
research will not lead to an advancement of the current state of the art. New avenues
are only of interest if we see the potential for such advancements. In all cases, our
final aim — but of course not always reached — is that the methods we propose will
ultimately be of use for a large community of engineers and scientists.

Indeed, the ultimate test as to whether a proposed computational scheme is of value
is clearly given by whether it is used widely in industry and scientific investigations
once published. This extensive use is driven forward by the keen interest in
engineering and the sciences to solve ever more complex and difficult physical
problems through finite element simulations.

Included in our research are the conception of novel methods, their mathematical
analysis, and their testing to establish generality, reliability and efficiency.

A finite element method is ‘general’ if it is applicable to many varied problems in a
certain category of problems; for example, a general shell element can be used for
all shell problems described by a general mathematical model like the ‘basic shell
model’ identified in references [3, 4].

A finite element method is ‘reliable’ and ‘efficient’ if identified as such; for
example, a finite element discretization is reliable and efficient if the ellipticity and
inf-sup conditions are satisfied without the use of any artificial factors, and the
scheme shows optimal convergence at a low computational cost [1, 2, 4, 5].

To show whether a method is reliable and efficient requires mathematical analysis,
as far as such is possible, and well-designed numerical tests [1, 2, 4]. Both, the
mathematical analyses and the benchmark tests, frequently cannot ‘prove’ that a
method is always efficient — considering, for example, general nonlinear analysis —
but these efforts can give significant insight into numerical schemes.

The objective in this presentation is to briefly summarize our research efforts to
advance the state of computational simulations with the above research aims in
mind. In the next sections, we present our recent developments regarding the
analysis of wave propagation problems, the analysis of shells, the prediction of more
accurate stresses, the use of interpolation covers to increase the convergence of finite
element discretizations, and the simulation of electromagnetic effects and their
coupling to structures and fluid flows. Since each of these developments covers a
large field, we can give in this chapter only a brief summary of our developments
and need to refer the reader to our papers written on these topics.

2 Some recent developments
In the following sections, we focus briefly on the basic ideas and some results and

refer to our papers for details on the research. When we give here solid mechanics
solutions, the procedures are also applicable in multiphysics analyses.
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2.1 The solution of wave propagation problems

Although much research effort has been expended on the solution of wave
propagation problems using finite element methods, the accurate simulation of
transient wave propagations and the accurate solution of harmonic problems at high
frequencies have remained a significant challenge. Such problems are abundantly
encountered, for example, in solid and structural mechanics, seismic engineering,
and in electromagnetics. The essential difficulty is that to capture the high frequency
response seen in wave propagations, extremely fine meshes of conventional finite
elements are needed. However, even with such very fine meshes in transient
solutions, spurious oscillations are calculated near the wave fronts, and numerical
dispersion and dissipation of waves, arising from the spatial and temporal
discretizations, are observed. Hence, spectral methods, spectral element methods,
and spectral finite element methods have been proposed but these are not as general
and effective as required in engineering practice.

We have developed a finite element method ‘enriched for wave propagation
analyses” [6]. This method shows considerable promise, in that the standard low-
order Lagrangian finite element interpolations are simply enriched with harmonic
functions, governed, as usual, by nodal degrees of freedom. An important point is
that the usual fundamental theory of finite element methods is applicable.

For two-dimensional solutions, the basic displacement interpolations for a typical
solution variable u(r,s) are

u(r,s)=

h,(r.s)

%3

" [o W . Yarle v
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where the U(“ 5 with superscripts are the nodal degrees of freedom, « is the

local element node, with 4, the conventional finite element interpolation function,
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and the S, C, and + and — are used in the superscripts to correspond to the harmonic
expressions. These interpolation functions can be written using exponentials on the
complex plane, but in the analysis of solids using only real arithmetic can be much
more effective. Of course, the interpolations for one- and three-dimensional
analyses directly follow from equation (1). Here, the two fundamental wavelengths
A, and A, and the wave cut-off numbers » and m with 1<k <n, 1<k <m,

and typically n,m <3, need to be chosen by the analyst as part of the model data.

As example solutions, we consider the field of transient analyses and the field of
harmonic problems, each with an illustrative solution.

2.1.1 A transient solution: one-dimensional impact of an elastic bar

This special one-dimensional problem, shown in Figure 1, can be solved accurately
using explicit time integration with 2-node linear elements and a lumped mass
matrix [2], and also using the Bathe implicit time integration [7, 8] (with a consistent
mass matrix and CFL number = 1.0). However, just to test the enriched finite
element formulation, we solved the problem using uniform meshes of 2-node linear
elements, consistent mass matrices, and the trapezoidal rule with the very small time

step Ar=2.5x10""s (resulting into significant oscillations in the response).

Figure 1 shows the well-known spurious oscillations in the velocity and hence stress
predictions. In this case, using the enriched finite elements we can control the large
spurious high-frequency oscillations and make them acceptably small. But more
studies are needed to identify in how far this solution behavior is applicable in two-
dimensional and three-dimensional analyses and how effective the procedure is in
practice.

2.1.2 A time harmonic solution: two-dimensional acoustic pressure wave

Here we consider the solution of the Helmholtz problem (see Figure 2)

VP+k’P=0 in .

oP

(—:g(.\',)') onS,, 2)
on

limﬁ((;—P—ikPJzo.
cor

r—x

where P(x,y) is the unknown harmonic pressure, k = @/c , r is the distance from
the origin in the Cartesian coordinates, and # is the unit normal on S, .
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Figure 1: Solution of impact of a bar, at time 0.00005s; (a) elastic bar
considered; (b) with 100 traditional linear elements; (c¢) with 700
traditional linear elements; (d) with 50 linear enriched elements; ()
with cutoff number 5

For the numerical test solution, we prescribed g(x,y) given by the analytical

solution and used k =22.06. Figure 2 shows the analytical solution and the mesh for
our finite element solution. We should note the rather coarse mesh used.
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Included in the mesh is a ‘perfectly matched layer’ to model the infinity of the
physical domain.

# R
YOO NS B RR

cboliebadiotsbiabobistabebatatatisbrfic s
“t+1-t-1- Perfectly matched layer -++1-
X T S T T R O Y N R T T T
(a) (b)

Figure 2: Solution of pressure wave; (a) the analytical pressure, A is the pole
at (X0,y0)=(0.5,0); (b) mesh of 9-node elements

Figure 3 gives contour plots of the pressure numerical solutions using the cutoff
numbers from 0 to 2 and the convergence in the L* norm (although a better norm
might be used). We note that the result obtained using the cutoff numbers
(n,m)=(2,2) is in good agreement with the analytical solution.

While, as mentioned earlier, we employ for the most part only real arithmetic, in this
example solution we used complex arithmetic for the perfectly matched layer in the
discretized domain.

2.2 The analysis of shells

Significant research efforts over some decades have been spent on the analysis of
shells, but there are still many outstanding challenges in the field of shell analysis
[4]. In the following, we focus on two important items, namely the proper
benchmark testing of shell elements, and the analysis of large strain conditions in
shells.

2.2.1 The testing of shell elements

Commonly, shell elements have been tested in linear analysis by solving plate and
some well-known shell problems, like the pinched cylinder, Scordelis-Lo, and
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hemispherical shell problems, but not including a shell of negative Gaussian
curvature. In these solutions, some displacements at certain points are measured. It
should, however, be recognized that such solutions do not constitute a thorough
assessment of the capabilities of a shell solution scheme. Instead, it is important to
measure the scheme on the following criteria:

— As basic requirements, the shell element used should not be based on artificial
factors, not contain any spurious modes and be geometrically isotropic.

150
— 120 {
=
2 90
[}
(9]
=
< 60
K]
o
30
0 '
0 1 2
Cutoff number
(c) (d)

Figure 3: Numerical solutions: (a) (n.m)=(0,02. (b) (n.m)=(1,1), (c)
(n,m)=(2,2) and (d) relative error in L~ norm not including the
perfectly matched layer
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— The element should be tested in the solution of the hyperboloid shell problems
shown in Figure 4, or similar problems of shells with negative Gaussian curvature,
and in these solutions proper norms should be used.

Figure 4: Three shell test problems; L=1.0, £=1.0x10", v=1/3

The shell surfaces in Figure 4 are given by X° +Z° =1+Y’ and the loading is the
pressure p(6) =cos(26) . Only the shaded regions in the figure are modeled.

As discussed in references [4, 9], the use of an appropriate norm in the error measure
is very important. Using the s-norm defined in these references, we present the test
results obtained using the MITC4 shell element in Figure 5. This element satisfies,
of course, the basic requirements mentioned above and, as seen in Figure 5,
performs very well in the analysis of the shell problems. For details on the testing of
plate and shell elements we refer to references [4, 9-11].

2.2.2 The large strain analysis of shells

The large strain analysis of shells is pursued in many applications of science and
engineering. Examples occur in biomechanical situations and in the crush and crash
analyses of structures.
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Figure 5: Convergence curves for the MITC4 shell element used in the three
problems of Figure 2.2-1, for decreasing shell thickness, using the
s-norm; (a) free-free shell; (b) fixed-fixed shell; (¢) fixed-free shell;
see reference [9]

We have developed 3-node and 4-node three-dimensional-shell elements that build
upon the classical MITC shell elements but that include important three-dimensional
effects [12]. The elements can be used to model very large deformations with large
plastic strains using the Updated Lagrangian Hencky total strain formulation [2, 13].
An important point is that the three-dimensional-shell elements can be employed in
explicit and implicit dynamic solutions and in static analyses, since no reduced
integration with hourglass control is used and there are no artificial stabilization
factors in the formulation. The three-dimensional-shell elements can be employed
like the conventional MITC shell elements with S or 6 degrees of freedom at each
node, but, when invoked by additional nodal degrees of freedom at the shell mid-
surface, the elements represent through-the-thickness straining (2 extra degrees of
freedom) and warping of the transverse fibers (2 or 3 extra degrees of freedom).
Thus, while all degrees of freedom are defined at the shell mid-surface nodes in
accordance with a shell theory, from a displacement interpolation point of view, the
elements can be thought of as higher-order three-dimensional solid elements, with
assumptions, when the additional degrees of freedom are invoked.

In the formulations, MITC interpolations are used to prevent shear locking, and in
incompressible analysis the u/p formulation is employed [2, 14]. A particular aspect
addressed in reference [12] is to give benchmark solutions for large strain analyses.
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Figure 6 shows an application in a large strain solution that represents a good
benchmark test [12]. Here the large strains in the structure result in a significant
downward shifting of the mid-surface nodes during the response.

Midsurface
Applied
rotation 35
' 30
2mm N sessnsissasasasviese
E 25
' £
£
20
" . S
10 mm $1s
Rubber block,
plane strain conditions, 1.0
unit thickness
05 /
Neo-Hookean material,
C,=1 Nimm? LY L A—
0 180 360 540 720

Figure 6: Large strain analysis of thick cantilever; incompressible Mooney-
Rivlin material; results using the MITC4 3D-shell element

Figure 7 shows some analysis results using the MITC4 three-dimensional-shell
clement in a slow crush analysis and Figure 8 shows a crash solution result, all
obtained using the Bathe implicit time integration scheme, for details see reference
[15].

Here, the important point is that the same elements are employed to solve static and
dynamic problems. Of course, since full numerical integration is used, solutions with
explicit time integration are computationally quite expensive compared to those
using elements based on reduced integration and hourglass control.

2.3 A procedure for stress improvements

It is well known that the low-order displacement-based finite elements (3-node
triangular and 4-node quadrilateral elements in two-dimensional solutions, and 4-
node tetrahedral and 8-node brick elements in three-dimensional solutions) are not
effective in predicting stresses accurately. Very fine meshes are needed in practice.
On the other hand, the elements are quite robust, and the bandwidth of the resulting
finite element equations is relatively small. Hence, if the order of stress convergence
could be increased, the elements would be quite attractive in various analyses.
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Figure 7: Quasi-static crushing of a square-section tube, length of tube is 310
mm; (a) experimental and computed results in final configuration;
(b) force — displacement curves; (c¢) mean crushing force -

displacement curves
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