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ADVANCES IN STATISTICAL BIOINFORMATICS

Providing genome-informed personalized treatment is a goal of modern
medicine. Identifying new translational targets in nucleic acid characteriza-
tions is an important step toward that goal. The information tsunami produced
by such genome-scale investigations is stimulating parallel developments in sta-
tistical methodology and inference, analytical frameworks, and computational
tools.

Within the context of genomic medicine and with a strong focus on cancer
research, this book describes the integration of high-throughput bioinformatics
data from multiple platforms to inform our understanding of the functional con-
sequences of genomic alterations. This includes rigorous and scalable methods
for simultaneously handling diverse data types such as gene expression array,
miRNA, copy number, methylation, and next-generation sequencing data.

This material is written for statisticians who are interested in modeling and
analyzing high-throughput data. Chapters by experts in the field offer a thorough
introduction to the biological and technical principles behind multiplatform
high-throughput experimentation.

Dr. Kim-Anh Do is Professor and Chair of the Department of Biostatistics at
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Dr. Zhaohui Steve Qin i1s an Associate Professor in the Department of Bio-
statistics and Bioinformatics at the Rollins School of Public Health, Emory
University.

Dr. Marina Vannucci is a Professor in the Department of Statistics at Rice
University, Director of the Interinstitutional Graduate Program in Biostatistics
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Preface

Providing genome-informed personalized treatment is an important goal of
modern medicine. Identifying new translational targets in nucleic acid charac-
terizations is an important step toward that goal. The information tsunami pro-
duced by such genome-scale investigations is stimulating parallel developments
in statistical methodology and inference, analytical frameworks, and computa-
tional tools. Within the context of genomic medicine and with a strong focus
on cancer research, this book describes the integration of high-throughput bio-
informatics data from multiple platforms to inform our understanding of the
functional consequences of genomic alterations. This includes rigorous and
scalable methods for simultaneously handling diverse data types such as gene
expression array, miRNA, copy number, methylation, and next-generation
sequencing data. This book is intended for statisticians who are interested
in modeling and analyzing high-throughput data. It covers the development
and application of rigorous statistical methods (Bayesian and non-Bayesian) in
the analysis of high-throughput bioinformatics data that arise from problems in
medical and cancer research and molecular and structural biology. The specific
focus of the volume is to provide an overview of the current state of the art
of methods to integrate novel high-throughput multiplatform bioinformatics
data, for a better understanding of the functional consequences of genomic
alterations. The introductory description of biological and technical princi-
ples behind multiplatform high-throughput experimentation may be helpful to
statisticians who are new to this research area.

Chapter 1 provides a detailed introduction to the next-generation high-
throughput technology platforms that are the main workhorses in today’s
biomedical research laboratories and sets the scene for the subsequent method-
ology chapters. This chapter is mainly aimed at nonbiologists and details the
unique measurement technologies, including next-generation DNA sequenc-
ing, genome profiling, and gene silencing, with associated idiosyncrasies for
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X1l Preface

the different platforms. It also generates an overall outline of issues that statisti-
cal methodologies can address. Chapter 2 briefly describes The Cancer Genome
Atlas (TCGA) project, an ambitious undertaking of the National Institutes of
Health to identify all key genomic changes in the major types and subtypes of
cancer. The description includes the history and goals of the TCGA project;
how samples are collected and analyzed on multiple platforms; how the result-
ing data are processed, stored, and made available to qualified researchers; and
what tools can be used to analyze TCGA data.

Subsequent chapters focus on specific methodological developments and are
grouped approximately by the data types, with several chapters discussing the
integration of at least two different data types. The central statistical topics
addressed include experimental design, model building, group comparisons,
regulatory networks, Bayesian networks, and gene interactions. The general
theme of each chapter is to review existing methods, followed by a specific
novel method developed by the author(s). Results are often demonstrated on
simulated data and/or a real application data set. Additionally, relevant software
may be discussed.

Chapter 3 describes a novel statistical method for analyzing the new array-
based sequencing data. The novel method named SRMA increases the accu-
racy of identifying rare variants and thereby reduces the costs of subsequent
sequence verifications. Chapters 4 and 5 discuss statistical approaches for
quantifying gene expression and differential expression using RNA-seq data.
Chapter 4 covers a wide range of topics, from read mapping, transcriptome
assembly, and normalization to Poisson models to measure gene expression
levels, methods to detect differentially expressed transcripts, and transcripts
showing allelic imbalance. Chapter 5 focuses on transcript-level expression
quantification using model-based methods. The authors provide a detailed
review of six major approaches and discuss the advantages and limitations
of all the methods. The authors then conduct performance comparisons using
a series of real data sets to help researchers gain in-depth understanding of
RNA-seq data.

Chapter 6 reviews a Bayesian approach for base calling, which uses a hierar-
chical model to account for the different sources of noise in the Solexa sequenc-
ing data. Chapters 7 and 8 survey statistical methodologies and Bayesian mod-
eling for the analysis of ChIP sequencing data. Chapter 7 offers a detailed
overview of the ChIP-seq experiment and steps required in the data analy-
sis part, including read mapping, peak-calling, validation, and motif analysis.
All main algorithms designed for the analysis of ChIP-seq data are discussed.
In Chapter 8, the authors present a detailed description of the PICS/PING
framework they have developed to analyze transcription factor and nucleosome
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positioning ChIP-seq data. Chapters 9 through 11 discuss advanced statistical
approaches for conducting association tests, particularly under the setting of
genome-wide association study (GWAS). Chapter 9 surveys the standard meth-
ods of analysis for GWAS data, compares them with the underlying genetic
model, and describes statistical approaches, such as penalized methods, that
have attempted to bridge the gap between the theoretical models and the meth-
ods of analysis, with particular emphasis on Bayesian methods. Chapter 10
describes Bayesian techniques that can improve the reliability of inference
through the incorporation of prior biological knowledge in SNP association
studies. These methods can be used to identify the subset of SNPs most rel-
evant to the disease under study and construct effective estimates that reflect
uncertainty over model choice. The authors conclude with a brief discussion of
Bayesian modeling and variable selection approaches for genome-wide associ-
ation studies. Chapter 11 reviews recent developments in multi-SNP analysis,
focusing on Bayesian variable selection regression, and compares them with
penalized regression approaches. The authors explain the advantage of multi-
SNP analysis in quantifying the total heritable signal in the data, including
an interesting approach that can achieve this goal without identifying individ-
ual SNPs. The authors also discuss machine learning methods approaches for
binary phenotypes.

Chapter 12 describes the problem of interpreting copy number data in the
context of cancer research, specifically the problems that arise because of tumor
ploidies significantly different from normal and the impact of normal DNA con-
tamination of tumor samples, especially those from solid tumors. The authors
then review a model that enables recovery of the copy number alterations in
the tumor DNA from estimates of the tumor DNA fraction and ploidy, along
with several algorithms for estimating these model parameters. Chapters 13
through 16 deal with integrated data analysis. Chapter 13 describes Bayesian
variable selection models for integrative genomics. The authors first look into
models that incorporate external biological information into the analysis of
experimental data, in particular gene expression data. The authors then focus on
Bayesian models that achieve an even greater type of integration, by incorporat-
ing into the modeling experimental data from different platforms, together with
prior knowledge. In particular, they apply graphical models to integrate gene
expression data with microRNA expression data. In Chapter 14, the authors dis-
cuss the problem of modeling the fundamental biological relationships among
different types of genomic alterations surveyed in the same set of patient
samples. The authors illustrate how to solve the problem using an objective
Bayesian model selection approach for Gaussian graphical models and use the
glioblastoma study in The Cancer Genome Atlas as an example. Three data
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types, microRNA, gene expression, and patient survival time, are used in this
integration study. Chapter 15 presents several recent statistical formulations
and analysis methods for differential co-expression analysis and for multi-
tissue gene expression data analysis and methods for eQTL analysis based on
RNA-seq data. Chapter 16 considers the joint modeling of microarray RNA
expression and DNA copy number data. The authors propose Bayesian mixture
models for the observed copy numbers and gene expression measurements that
define latent Gaussian probit scores for DNA and RNA and integrate the two
platforms via a regression of the RNA probit scores on the DNA probit scores.

Chapters 17 through 19 discuss emerging ideas in genomic data analysis.
Chapter 17 reviews the basic framework of Bayesian sparse factor modeling, a
highly flexible and versatile approach for multivariate analysis, and describes
its applications in bioinformatics, such as in transcription regulatory network
inference and biological pathway analysis. In Chapter 18, the authors discuss
applying the survival-supervised latent Dirichlet allocation (survLDA) model
to utilize rich, diverse data types, such as high-throughput genomic infor-
mation from multiple platforms, to make informed decisions for a particular
patient’s well-being, for personalized genomic medicine. The authors use simu-
lation studies to understand what conditions can lead to an increased predictive
power of survLDA. In Chapter 19, the author discusses how to achieve reliable
estimation and variable selection in the linear model in the presence of high
collinearity. The author examines deficiencies of the elastic net and argues in
favor of a little-known competitor, the “Berhu” penalized least squares estima-
tor, for high-dimensional regression analyses of genomic data.

Chapter 20 provides a simple, practical, and comprehensive technique for
measuring consistency of molecular classification results across microarray
platforms, without requiring subjective judgments about membership of sam-
ples in putative clusters. This methodology will be of value in consistently
typing breast and other cancers across different studies and platforms in the
future. Chapter 21 surveys a variety of pathway analysis methodologies for
functional enrichment testing and discusses their strengths and weaknesses. A
study of the gene expression profile differences between metastatic and local-
ized prostate cancer is used for illustration. Chapter 22 discusses the problem of
recovering progression patterns from high-dimensional data. The author argues
that if the ordering of the cancer samples can be recovered, such ordering lay-
out trajectories may reflect certain aspects of cancer progression and therefore
lead to a better understanding of the disease. The final chapter, Chapter 23,
reviews the evolving aims of phylogenetic inference, with successful insights
derived from modern viral surveillance, and the techniques that can help to
overcome the computational limitations of Bayesian phylogenetic inference.
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We thank our colleagues, friends, and collaborators for contributing their
ideas and insights to this collection. We are excited by the continuing oppor-
tunities for statistical developments in the area of integrated high-throughput
bioinformatics data. We hope our readers will enjoy reading about new tech-
nology advances and new trends in statistical development.
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1

An Introduction to Next-Generation
Biological Platforms

VIRGINIA MOHLERE, WENTING WANG,
AND GANIRAJU MANYAM

1.1 Introduction

When Sanger and Coulson first described a reliable, efficient method for
DNA sequencing in 1975 (Sanger and Coulson, 1975), they made possible
the full sequencing of both genes and entire genomes. Although the method
was resource-intensive, many institutions invested in the necessary equipment,
and Sanger sequencing remained the standard for the next 30 years.

Refinement of the process increased read lengths from around 25 to almost
750 base pairs (Schadt et al., 2010, fig. 1). Although this greatly increased
efficiency and reliability, the Sanger method still required not only large equip-
ment but also significant human investment, as the process requires the work
of several people. This prompted researchers and companies such as Applied
Biosystems to seek improved sequencing techniques and instruments. Starting
in the late 2000s, new instruments came on the market that, although they
actually decreased read length, lessened run time and could be operated more
easily with fewer human resources (Schadt et al., 2010).

Despite discoveries that have illuminated new therapeutic targets, clarified
the role of specific mutations in clinical response, and yielded new methods
for diagnosis and predicting prognosis (Chin et al., 2011), the initial promise
of genomic data has largely remained unfulfilled so far. The difficulties are
numerous. The functional consequences of individual mutations are not always
clear. In fact, it is often logistically challenging to determine which discovered
mutations make a critical contribution to disease and which are due merely to
genetic instability and confer little functional effect.

In part, these difficulties lie in the methods used to acquire data.
Microarray plates started to replace the labor-intensive Sanger method in
the mid-1990s (Schena et al., 1995). These plates consist of many small
wells that contain probe sets (e.g., up to 54,000 on the Affymetrix GeneChip
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[www.affymetrix.com]), or stacks of bases. The target sequence is fluorescently
labeled and washed onto a chip; levels of matching sequences are then analyzed
by a laser, and the signal from laser indicates the amount of gene expression.
Depending on how the data are measured and then analyzed, several metrics
can be determined, including the concentration of a particular gene’s mRNA
transcript at a discrete point in time; differences in expression of the same gene
among many samples; or differences in phenotype, reaction to a particular
treatment, or prognosis that arise from differences in expression levels among
samples (McGee and Chen, 2005).

The ability to place large numbers of probes on one chip, and later the
availability of standard commercial microarray chips, greatly decreased the
cost of expression assays. They are not, however, without their drawbacks.
For example, to construct the probe sets on the microarray, the genome of the
organism studied must be well characterized. Also, microarray data are obtained
from sequences hybridized to the probes stuck to the plate, and this process
can introduce errors, not only because of unreliable probes but also because
of cross-hybridization of imperfectly matching target sequences. Methods that
require samples to be amplified by polymerase chain reaction (PCR) might
introduce unavoidable errors not in the original sample, and these are not easy
to determine. Also, because microarray data are gathered by measuring the
fluorescence signal, both very rare and very common signals (those that are
very faint and those that are very bright) near the detection limits of the assay
at either end cannot be measured accurately (McCormick et al., 2011).

To overcome these limitations, research has continued to find more efficient
ways to quantify biomolecular data. This has given rise to next-generation
sequencing (NGS), also called high-throughput sequencing. These methods
measure single molecules of DNA or RNA using methods, such as nanopores,
described later in this chapter. Such technologies aim to overcome the limi-
tations of previous methods by generating millions of short reads to provide
detailed views of cellular activity at nucleotide resolution. “Short,” in this case,
means that sequences that are generally read are 18-25 nt long. This length
serves two purposes: first, it is easier and cheaper to gather shorter sequences;
second, many small DNA and RNA elements are known to be within this size
range, so they will be captured at this length (McCormick et al., 2011). These
reads are then assembled into longer sequences.

However, using short sequences runs the risk that each read might map to
more than one site in a given genome. To ensure that the reads are generated
with good quality, many copies are run with slightly overlapping ends. The
number of repeats required to ensure correct mapping is called “coverage,” and



