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Preface to Fifth Edition

This edition maintains the successful theme of previous editions, namely a modular pro-
gramming style which leads to concise, easy to read computer programs for the solution
of a wide range of problems in engineering and science governed by partial differential
equations.

The programming style has remained essentially the same despite huge advances in
computer hardware. Readers will include beginners, making acquaintance with the finite
element method for the first time, and specialists solving very large problems using the
latest generation of parallel supercomputers.

In this edition special attention is paid to interfacing with other open access software,
for example ParaView for results visualisation, ABAQUS user subroutines for a range
of material constitutive models, ARPACK for large eigenvalue analyses, and METIS for
mesh partitioning.

Chapter 1 has been extensively rewritten to take account of rapid developments in com-
puter hardware, for example the availability of GPUs and cloud computing environments.
In Chapters 2 to 11 numerous additions have been made to enhance analytical options,
for example new return algorithms for elastoplastic analyses, more general boundary
condition specification and a complex response option for dynamic analyses.

Chapter 12 has been updated to illustrate the rapidly advancing possibilities for finite
element analyses in parallel computing environments. In the fourth edition the maxi-
mum number of parallel ‘processes’ used was 64 whereas in this edition the number has
increased to 64,000. The use of GPUs to accelerate computations is illustrated.
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1

Preliminaries: Computer Strategies

1.1 Introduction

Many textbooks exist which describe the principles of the finite element method of analysis
and the wide scope of its applications to the solution of practical engineering and scientific
problems. Usually, little attention is devoted to the construction of the computer programs
by which the numerical results are actually produced. It is presumed that readers have
access to pre-written programs (perhaps to rather complicated ‘packages’) or can write
their own. However, the gulf between understanding in principle what to do, and actually
doing it, can still be large for those without years of experience in this field.

The present book bridges this gulf. Its intention is to help readers assemble their
own computer programs to solve particular engineering and scientific problems by
using a ‘building block’ strategy specifically designed for computations via the finite
element technique. At the heart of what will be described is not a ‘program’ or a set
of programs but rather a collection (library) of procedures or subroutines which perform
certain functions analogous to the standard functions (SIN, SQRT, ABS, etc.) provided
in permanent library form in all useful scientific computer languages. Because of the
matrix structure of finite element formulations, most of the building block routines are
concerned with manipulation of matrices.

The building blocks are then assembled in different patterns to make test programs for
solving a variety of problems in engineering and science. The intention is that one of
these test programs then serves as a platform from which new applications programs are
developed by interested users.

The aim of the present book is to teach the reader to write intelligible programs and to
use them. Both serial and parallel computing environments are addressed and the building
block routines (numbering over 100) and all test programs (numbering over 70) have been
verified on a wide range of computers. Efficiency is considered.

The chosen programming language is FORTRAN which remains, overwhelmingly, the
most popular language for writing large engineering and scientific programs. Later in this
chapter a brief description of the features of FORTRAN which influence the programming
of the finite element method will be given. The most recent update of the language
was in 2008 (ISO/IEC 1539-1:2010). For parallel environments, MPI has been used,
although the programming strategy has also been tested with OpenMP, or a combination of
the two.
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