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Preface

This volume contains 31 papers, based on the invited talks given at the 2003
AMS-IMS-SIAM Joint Summer Research Conference in the Mathematical Sciences:
Mathematics of Finance, held in Snowbird, Utah, June 22-26, 2003. This was the
first ever conference on mathematics of finance jointly sponsored by AMS, IMS,
and STAM.

Financial mathematics is a rapidly expanding field. It involves a wide spectrum
of techniques that go far beyond the traditional applied mathematics. Research in
mathematics of finance has witnessed tremendous progress in recent years. The
Black-Scholes model and its various extensions for pricing of options have had an
influential impact on financial practice and led to a revolution in the financial in-
dustry. The introduction of stochastic analysis and stochastic control techniques
has resulted in a number of important advances. To name just a few, they include
the studies of valuation of contingent claims in complete and incomplete markets,
consumption-investment models with or without constraints, portfolio management
for institutional investors such as pension funds and banks, and risk assessment and
management using financial derivatives. These applications, on the other hand, re-
quire and stimulate many new and exciting theoretical discoveries. As a major
impetus to the development of financial management and economics, research in
mathematics of finance has had a major impact on the global economy. Moreover,
the development of mathematics of finance has created a large demand for mathe-
matics graduates at both Master and Ph.D. levels in the financial industry, resulting
in the introduction of this topic in the curriculum of mathematical sciences depart-
ments of many universities. The rapid progress has necessitated communication
and networking among researchers in different disciplines. This summer research
conference provided us with an excellent and timely opportunity. It brought to-
gether researchers from mathematical sciences, finance, economics, and engineering,
and financial industry to review and to update the recent advances, and to identify
future directions of mathematics of finance.

The scientific program of the conference consisted of 42 invited talks, a poster
session, and a panel discussion on research and education. While recent progress has
been surveyed, reviewed, and substantially updated, new ideas, models, methods,
and techniques have been explored. The invited speakers presented a broad spec-
trum of problems, models, and results involving modeling, estimation, optimiza-
tion, control, risk assessment and management, contingent claim pricing, dynamic
hedging, and financial derivative design. Valuation of contingent claims remains the
centerpiece of modern financial theory. Its key components include financial market
modeling and dynamic hedging. While the Black-Scholes models have been widely
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used in characterizing movements of financial markets for decades, it has been recog-
nized that their utility is limited because they assume deterministic rates of return
and volatility, and because they ignore many aspects of the markets. In the past
few years, various attempts (including stochastic volatility, jump diffusions, and
hybrid market models) have emerged to modify and generalize the Black-Scholes
models. Optimal portfolio management uses a stochastic control approach. Orig-
inating from Merton’s pioneering work, it continues to have an important role in
finance theory. The objective is to allocate financial assets dynamically among
risky and fixed-income investments with the goal of maximizing expected overall
return of consumption measured by some utility function. A closed-form solution
is possible only for the simplest models. Typically, optimal investment and con-
sumption control policies must be found by solving a partial differential equation of
Hamilton-Jacobi-Bellman type. However, nonlinearities make numerical implemen-
tations difficult, and efficient schemes are needed. Other difficult issues include, for
example, mathematical model selections and choices of utility functions. Financial
risk management has attracted growing attention in recent years. Such devastating
events as the Long-Term Capital Management default and the Enron bankruptcy
shook the financial world. It has become clear that there is an urgent need for fur-
ther research on corporation credit risks as well as the possibility to hedging these
risks using financial derivatives. As a result, one of the emerging research topics is
the study of credit risk management.

As an archive, this volume presents some of the highlights of the conference. It
collects papers covering a broad spectrum of topics in mathematical finance; all pa-
pers have been refereed. The organizing committee consisted of Wendell H. Fleming
(Brown University), Jean-Pierre Fouque (North Carolina State University), George
Papanicolaou (Stanford University), Bozenna Pasik-Duncan (University of Kansas),
Stanley R. Pliska (University of Illinois at Chicago), Ronnie Sircar (Princeton Uni-
versity), George Yin (Wayne State University, Chair), and Qing Zhang (University
of Georgia, Co-chair). It was supported in part by the National Science Foundation.

Without the encouragement, help, and assistance of many individuals, the con-
ference could not have taken place. We thank the invited speakers, the panelists,
the poster presenters, and all invitees for making the conference a successful event;
we thank the members of the organizing committee for their help, advice, and sug-
gestions. Our thanks go to the AMS-IMS-SIAM Committee on Summer Research
Conferences in the Mathematical Sciences, in particular, Thomas DiCiccio, chair of
the committee, and James Maxwell of the AMS, who helped us shape the confer-
ence and provided us with valuable comments and suggestions in the preparation
of the conference. We are especially grateful to Donna Salter and Wayne Drady for
their constant and tireless help during the preparation of the conference as on-site
management. The assistance from Sergei Gelfand, Christine Thivierge, and the
AMS professionals during the preparation of this volume is also gratefully acknowl-
edged. Finally, we are thankful to the National Science Foundation for supporting
the Summer Research Conference.

George Yin and Qing Zhang
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Credit Barrier Models in a Discrete Framework

Claudio Albanese and Oliver X. Chen

ABSTRACT. We formulate credit barrier models in the framework of jump pro-
cesses with absorption on a discrete lattice. The lattice model is formulated
in terms of finite state Markov processes related to the Hahn family of hyper-
geometric polynomials. The continuous limit we obtain as the lattice spacing
goes to zero corresponds to the Jacobi process. The model is designed to relate
real-world and risk neutral measures.

1. Introduction

Credit barrier models are derivative pricing models for credit sensitive instru-
ments. The underlying is a credit quality variable with the meaning of distance
to default, a measure of an obligor’s leverage relative to the volatility of its asset
values. The first models in this class appeared in working papers and internal doc-
uments [HLPQ99], [GHO01], [DJ02] and made their way to the open literature
in articles by Hull and White [HWO01] and Avellaneda and Zhu [AZO01]. This
first generation of credit barrier models involves estimations against a single spread
curve. Real world estimates instead are applied to barrier models of the Merton
type used for risk management applications as in the CreditMetrics™ technical
document by Gupton et al. [GFB97]. A new class of credit barrier models was
introduced by the authors in [ACCZ03] and [ACO03] in an attempt to reconcile the
real-world and the risk-neutral measure. In this new class, the estimation frame-
work is extended to include a more comprehensive set of statistical data such as
historical migration rates, default frequencies over several time horizons and aggre-
gate spread curves across all ratings. Within the extended framework, one obtains
metrics for relative liquidity spreads across credit ratings. One also obtains a new
methodology to extrapolate implied migration rates; in [AC03] we compare with

2000 Mathematics Subject Classification. Primary 91B28; Secondary 33C45, 39A70, 60J60.

Key words and phrases. Credit risk models, discretization schemes, Jacobi process, Hahn
process.

The authors were supported in part by the Natural Sciences and Engineering Research Coun-
cil of Canada. We thank Giuseppe Campolieti, Francesco Corielli, Alexei Kuznetsov, Stephan Lawi
and Andrei Zavidonov for discussions. We thank the participants to the AMS-SIAM Conference
in Mathematical Finance (Snowbird 2003), the Riskwaters Credit Risk Summit (London 2003),
the GARP Credit Risk Summits (London and New York 2003), Risk Europe (Paris 2003) and
Risk Italia (Milano 2003) for discussions. This research was conducted in part while the authors
were at the National University of Singapore.
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earlier methods proposed by Jarrow, Lando and Turnbull [JLT97], and by Kijima
and Komoribayashi [KK98].

The present paper recasts the model in [ACO03] in a new mathematical frame-
work which has much greater numerical efficiency. While the previous model was
constructed upon CIR processes, here we start from a deformation of this pro-
cess called the Jacobi process and a discretization thereof that we refer to as the
Hahn process. This discretization is accomplished by approximating the continuous
process by a birth-death process on a finite lattice, in continuous time. The Ja-
cobi and Hahn processes are both integrable in terms of orthogonal hypergeometric
polynomials (see, for example, [Sch00], [NSUag] and [KS98]). Hahn processes
in particular are used to build a new class of lattice models in a recent work by
Albanese and Kuznetsov [AKO03]. These lattice models are characterized by the
property that node-to-node transition probabilities are computed analytically in
such a way that prices of European style options do not depend on how the time
nodes are chosen. In this article, to extend this framework to the case of credit
barrier models, we allow for absorption to be present at the boundary without
compromising analytic solvability in closed form. Since these numerical schemes
are flexible enough to accommodate Bochner subordinators, the models also ex-
tend to the case where the continuous limit process is a subordinated diffusion with
jumps.

The relevant literature on applications of the theory of orthogonal polynomials
to stochastic processes includes earlier works by Ledermann and Reuter [LR54]
and Karlin and McGregor [KM57], who studied the spectral theory of birth-death
processes. Karlin and McGregor [KM61] considered the dual Hahn polynomials in
modeling a birth-death process with application to a problem in genetics. A more
recent analysis of orthogonal polynomials in the context of birth-death processes is
given by van Doorn [vDO03]. Cases with absorption and explicit time dependency
are considered by Lenin, et al [LPSvDO0O]. Lorente [Lor03] and [Alb03] examine
integrable systems represented by orthogonal polynomials of discrete variable in
classical and quantum physics. Finally, jump processes constructed in terms of
orthogonal polynomials are studied by Schoutens [Sch00].

The rest of the paper proceeds as follows: section 2 will outline the procedure in
the case of a continuous diffusion with the Jacobi process as the underlying process
as opposed to the CIR process used in [ACCZO03] and [ACO03]. Section 3 will give
a full description of the discretization scheme and lays out the procedure for con-
structing a model. The risk-neutralizing procedure is not exactly analogous to the
previous papers, but differs in order to take full advantage of the new discretization
scheme. Section 4 concludes the paper.

2. Continuous case

We present the procedure for the Jacobi process in order to draw parallels to
the previous CIR process studied in [ACCZ03] and [ACO03]. We elected to change
the underlying process from the CIR process to the Jacobi process because the
Jacobi process is restricted to a finite interval. As will be seen in the following
section, this leads to a finite number of basis eigenvectors upon discretization.

In order to model the real-world credit process, we require a local martingale
defined on an interval I which is required to be bounded below. Without loss of
generality, we set the lower boundary to be zero. We require zero to be an absorbing
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boundary, and consider the credit process y; to have defaulted if absorption at zero
occurs. Further, suppose that there are K different credit rating classes that an
obligor can be in. We partition I into intervals I, ..., Ix sequenced such that if
y1 € I; and yp € I}, with j < k then y; < yo. Then, if at time ¢ the credit process
ys of a given reference name is in the interval I, we consider that reference name
to be in the k*" credit rating class.

2.1. Underlying process. In order to obtain an integrable local martingale,
we first require an underlying stochastic process which in this case we choose to be
the Jacobi process. In general, a stochastic process is described as being a Jacobi
process if it satisfies the stochastic differential equation:

dxs = (a — bay)dt + voy/ (2 — ¢)(d — 2¢)dW.

Since we utilize the Jacobi process only as an underlying process for a local mar-
tingale process, we are free to specialize to the process:

d]?t == ((1 +1-— (OZ + B ot 2)$t)dt + 2(1 7= Jit)Itth.

Here, a,3 > —1 and the process is defined on the interval (0,1). Any further
freedom that is required for calibrating the process can be obtained by adjusting
the subsequent measure change and transformation to obtain the local martingale
process.

The infinitesimal generator of this process is given by the differential operator:

2
(2.1) L = (1—$)$£§+[a+1~(a+5+2)m]%.

The probability kernel wu(zo,z) for this process is the solution to the backward
Kolmogorov equation:

d
Lug(zo,z) = *aut(ﬂvo, z)

(2.2)
where £ acts on the first variable xy, with initial condition:
uo(zo,x) = d0(x — xo).

We note here that there is a representation of the probability kernel as an infinite
sum of Jacobi polynomials, which are a family of orthogonal polynomials. However,
as the continuous case is not the focus of the present paper, we will not give this
expression. The analogous representation is given in the discrete case.

2.2. Constructing a local martingale process. In order to construct the
measure change and transformation, we require two linearly independent solutions
f1 and f> of the eigenvalue equation:

(2.3) Lf = »of

for some real number p. Suppose we can find two coefficients ¢; and ¢s such that
the linear combination

g = cafiteafe
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is strictly positive. Then, it is shown in [AKO3] that for any choice of the coeffi-
cients c3 and ¢4 such that c1cq — cacs # 0, the transformation:

csfitceafa lim c3fi(x) 4+ cafo(z)

2.4 Y
e g R @
is invertible with inverse Y ~! = X and the function
N _ 9(X(y)
2.5 u 5 = g PX I g X 20), X (1
(2.5) ¢(y0,y) (J)g(X@U)) (X (%), X (v))

is the probability kernel for a local martingale stochastic process with infinitesimal
generator:

L = X'g7MX)(L-p)g(X)
and volatility function:
(2.6) oly) = V2X(y)([1-Xu)Y'(X(y).

Notice that equation (2.3) is a hypergeometric differential equation, with gen-
eral solutions in terms of the Gauss hypergeometric function:

(2.7) f(@) = AsFi(a,bja+1|z)+Br @ yF(a—a,b—a;1— o)
where the parameters a and b are given by:
(a+B8+1)+/(a+B8+1)2=4p

2
(a4+8+1)—/(a+8+1)2—4p

> .

The general hypergeometric function pFy is given in equation (A.2). Thus, we are
free to choose

a =

b =

fi(z) = 2Fi(a,bja+1|x)
fa(x)

"% ol (a—a,b—o;1 - alz).

2.3. Applying a stochastic time change. Using the CIR process as in
[ACCZ03] and [ACO03], it was found that the martingale process constructed in
analogy to the above procedure could not be calibrated to accurately match actual
credit processes. In particular, the kurtosis of the distributions involved was too
small. This problem was remedied by performing a stochastic time change. We
take the same approach here, by applying a stochastic time change of the variance-
gamma type. Then, the new kernel can be calculated as:

Ur(yo,y) = / e (Yo, y)y(t, 7)dt
0

where 7 is the probability density function of the gamma distribution and is defined
by:
2e‘r/l/—le~t/l/
2.8 v, 7)) = ————.
( ) 7( ) F(T/V)UT/V
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2.4. Risk-neutralization. The stochastic process described above is suffi-
cient to model the real-world process. We apply a time-dependent drift in order to
match interest rate spreads in the risk-neutral setting. The procedure in [ACCZO03]
and [ACO03] for the CIR process can be summarized as follows: (i) a default bound-
ary was placed in y-space; (ii) a transformation was applied that kept the volatility
invariant and mapped the default boundary to zero; (iii) the partial differential
equation was solved numerically; (iv) the stochastic time change was applied to the
probability kernel.

An analogous procedure can be applied in the present case with the Jacobi
process. As the continuous case is not the focus of the present paper, and as the
risk-neutralization in the discrete case is not directly analogous to the continuous
case, we do not give the explicit procedure here.

3. Discrete case

While it was possible to calibrate the process in the CIR case, the calcula-
tions involved were very numerically intensive due to the need to perform two-
dimensional quadrature. In [ACCZ03] and [ACO03], we discretized the continuous
case merely by approximating the transition probabilities with integrals over the
intervals of the credit classes.

Rather, we can approximate the continuous process with a discrete, finite state
process that is a birth-death process. That is, only nearest neighbor transitions are
allowed, and the transitions are Poisson processes. The analogy to the continuous
case is obvious: instead of intervals corresponding to credit classes, we have adjacent
sets of nodes on the lattice corresponding to credit classes.

With the discretization carried out in this way, we find that it is possible
to calculate the transition probabilities in analytically closed form, making the
computations much more efficient.

3.1. Underlying process. Define the infinitesimal generator Ly of a sto-
chastic process & on the discrete lattice A = {0,..., N} by the finite difference
operator:

(3.1) Ly = D()A+[B() - D) Vy
where Af(€) = F(€+ 1) + £(€ — 1) — 2f(€) and V. f(€) = F(€+1) — f(€) and:

B) = (N-&(E+a+1)
D) = E&N+B8+1-¢ €E€A.

It can be shown that the difference operator Ly converges to the differential op-

erator £ described in the previous section, for N large. Here, convergence has the

meaning that for all f € C? and for all x such that zN € A° = {1,..., N — 1},
Lf(x) = Lnfn (xN) = O(1/N),

where fy(zN) = f(x).
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The infinitesimal generator £y can be represented by a tri-diagonal matrix:

bo agp 0
(&3] b1 aj 0
0 ¢ by az
(3.2) Ln(&0,8) =
cy-1 by_1 an-—1
CN bN
where
ac = B(), £€=0,...,N—-1

ce = D), €¢=1,...,N.

Written in matrix form, the condition for £y to be the infinitesimal generator of a
process where probability is conserved is for all of the rows to sum to zero. While
this clearly holds on the interior points, it is also true for the zero-th and N*® row
since D(0) = 0 and B(N) = 0 respectively. However, for a stochastic process that
would be appropriate to model credit risk, we require absorption at zero to emulate
default. This can be accomplished by making a measure change and transformation
in analogy to the continuous case.

3.2. Constructing a local martingale process. In analogy to the continu-
ous case, one can specify a measure change and transformation for a discrete process
to obtain another infinitesimal generator £y that gives a stochastic process that
is a local martingale. In addition, if we choose the measure change appropriately
then there will be probability conservation at the upper boundary and probability
absorption at the lower boundary, which is what is desired in a credit model with
the possibility of defaults at 0. We describe here the procedure and utilization of
the measure change and transformation.

Given a real number p, we seek two linearly independent functions fi,~n and
f2,n on the lattice A that satisfy the equation Ly fi,n = pfi,n on the interior of A.
That is,

(3.3) Ln(&o0,8) fin(€) =pfin(&0) &=1,...,N—1.

In particular, the difference equation (3.3) that f; and fa satisfy converge to the
differential equation given in (2.3). If we choose two linearly independent sets of
terminal points {f1 nv(N — 1), f1 y(N)} and {fo,n(N — 1), f2.x(N)}, then we can
use the recurrence relation:

D) fin(€—1) = [BE) + DOIfin(€) + BE) fin(€E+1) = pfin()
obtained from (3.1) to iterate fi,v and fa y backwards to obtain the functions on
all of A. Assume that two coefficients ¢; and ¢z can be chosen such that the function

gn = afin+cfon

is strictly positive on A. In addition, choose two coefficients c3 and ¢4 and define
the transformation v = Y(¢) as:

T — csfin teafan  c3fin(0) + cafan(0)

gN gn(0)




