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PREFACE

This book has three parts: Basics, Practice, and Theory.

The study of linear transformations between finite-dimensional vector spaceg
is carried out ultimately, both in practice and in theory, in terms of matrices.
This is true because every finite-dimensional vector space V is, for some natu-
ral number n, essentially the set of all n-tuples of elements of a field X, e.g.,
real or complex numbers. Thus much of this book is concerned with the study
of n-dimensional real space R™ or n-dimensional complex space C" and lineay
transformations among and within them.

The identification of V with one of those spaeés can be made in an infinite
number of ways and, so viewed, V can be studied abstractly. The consequence
is that a linear transformation T can be represented as a matrix in infinitely
many ways and the search for a useful matrix representation of T is regarded as
the search for a useful identification of V with C", in effect a search for a useful
basis for V. This approach to linear algebr& is dscnbod in Part IIT but is not
the one used in Part I.

In Part I the emphasis is on matrices themselves, and on their algebraic
relations. The fundamentals of linear algebra are presented in the context of
matrices as rectangular arrays and of vectors as special kinds of matrices, i.e.,
n x 1 or 1 x n matrices. The more abstract development in J§ ¥t III serves, in
particular, to illuminate the concrete discussion of Part 1.

Part I. Basics.
Chapter 1. Orientation. Here the motivations for the study of linear
algebra are given in terms of five problem classes.
Chapter 2. The PROCESS (Simple elimination). Several versions
are given of the elimination method for analysing a system of finitely
many equations in finitely many unknowns. The experience with this
kind of analysis is made to lead naturally to the study of matrix algebra
and the language of linear algebra. The notions of invertible matrices,
rank, limension, solvability of systems of equations, etc., are repeatedly
brought back to their roots in the different versions of elimination.
Chapter 8. Determinants (A direct approach). The 'standard ap-
proaches to determinant theory are replaced by a simpler Cescription,
again based firmly in the elimination methods discussed in Chap-
ter 2. Fortunately the simpler definition of a determinant is not
merely equivalent to the standard definitions. It provides also for
an easier proof of the basic multiplication theorem for determinants
(det(AB) = det(A)dei(B)) and for a direct and algorithm.ic method for
the evaluation of a determinant.
Chapter 4, Useful Forms For Matrices,From the standpomt of matrix
algebra and the functional calculus for matrices, there is given a moti~
vated study of a SQUARE matrix and the possibilities for reducing it to
more easily manipulable, e.g., diagonal and Jordan normal, forms. The
presentation here, like the presentation of determinant theory, is nove}

.
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and makes more accessible the whole topic of useful forms for matrices.
The possibility of doing most of functional calculus with polynomial
functions of a matrix is emphasized and illustrated.
Part 1I. Practice.

Chapter 5. Applying Linear Algebra.Applications of the developments
in Part I are given to a wide variety of “real world” problems, partic-
ularly those sketched in Chapter 1 but others as well. The computa-
tional aspects, considered today to be central in current studies of linear
algebra, are discussed at some length. As well there are treatments of
linear programming (including the Bland rules and the Karmarkar al-
gorithm), 0-sum 2-person game theory, and Markov chains.

Part III. Theory.
Chapter 8,General Vector Spaces,The contents of Part I are given a
broader setting via a reformulation in terms of abstract vector spaces
and their endo-, epi-, homo-, iso-, and monomorphisms. Generaliza-
tions to infinite-dimensional spaces, in particular to Hilbert space, are
indicated for the basic results derived in Part I. The limitations on
these generalizations are exemplified.
Chapter 7. Quadratic Forms,Sylvester’s Law of Inertia is proved. Def-
inite quadratic forms are examined and characterized by determinantal
criteria. Quadratic forms are applied to the study of extrema in multi-
variable calculus.
Chapter 8:Miscellany,The elements of vector space duality, of multilin-
ear forms (with some reference to determinants), and of tensor algebra
conclude the book.

Numerical Exercises and Examples abound throughout the text. Some
of the simpler facts about linear algebra are given as Exercises in the body of
the text. )

" References such as [M'W] refer to items in the Bibliography.

There are occasional notes on etymologies, particularly of those words that
are peculiar and intrinsic to the subject of linear algebra.

Thanks are extended to Roberto Leggiero, who, at a crucial time for the
writer, was a consultant at the SUNY/Buffalo University Computing Services.
Mr. Leggiero’s patience and assistance in showing the author how to use TgX
for typesetting the contents of this book were most helpful.

SUGGESTIONS FOR COURSE OUTLINES

A one-semester introductory course can be based on Sections 1.1 - 3.1
and 4.1 - 4.4. The level of the course determines the thoroughness with which
the material is covered. For example, the treatment in Section 3.1 provides
a simple, direct, and easily understood definition of the determinant function.
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The study and derivation of the properties of determinants can be passed over
lightly so long as the WORKING RULES are explained.
A second semester permits coverage of Sections 4.5 - 4.8 and Part II.
In a third semester the material in Section 8.1 and in Part III provides
the foundation for the study of abstract vector spaces and their elaborations.

Note on terminology. In the mathematical community, the words “Gauss,”
“'Jordan,“ “elimination,”, “reduction,” “row-reduction,” and “echelon form” in
appropniate combinations are used to describe the procedures and results arising
in the analysis of systems of linear equations. The essential ideas are embodied in
what is here called the PROCESS. Successively refined variants of the PROCESS
are dubbed the GEM (Gauss Elimination Method) that yields the echelon form,
the GIM (Gauss Jordan Method) that produces via extended row-reduction an
echelon form in which each pivot is 1 and each pivot column is a canonical basis
vector.

SUNY /Buffalo
June 1988
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PART I BASICS |

CHAPTER 1

ORIENTATION

1.1. Where= linear algebra is useful and used

The subject of linear algebra crops up in modern applied mathematics and
in many ways. Linear algebra is used to address and solve practical problems
for which the methods of differential and integral calculus are of Little value. 1t
also provides the meaus for getting concrete numerical answers 1o a vast array
of problems that arise in the applications of calculus itself, e.g., in ordinary and
partial diffeyremi equations, in integral equations, and, most spectacularly, in
quantum me€»<nics. In the last instance certain infinite-dimensional general-
izations of finite-dimensional linear algebra seem to provide the most successful
mathematical and practical solutions to the problems in atomic physics' (quan-
tum mechanic:. . 3 i

In the next few peragraphs there are posed some very simple #ad et very
practicel problems. Linear zlgebra plays a central roie in the solution of each of
these problems. They are readily grouped into classes characterized by'the kinds
of matriz mgnipulations used to solve the problems. .

The problem classes are listed below. They are illustrated in this section.
In later parts of the book there are thorough treatments of the most eflective
methods of linear algebra that can be used to solve the problems m a given class.

The mathematics — linear algebra — stands on its own feet. It is sometimes
motivated and even to some extent assisted by an understanding of the technical
details of the physics, biclogy, ecolagy, economics, etc., from which the problems
in the various classes come. However to understand the mathematics of linear
slzebra one need not be at all familisr with any of applied fields mentioned.

THE PROBLEM CLASSES
PLY

I. Systems of finitely many linear equations in finitely many unknowrs.
II. Stability of populations of living organisms, of mechanical systems, and

Section 1.1. Where linger algebra is useful and used



of biological and chemical processes, etc.

TII. Approximation of solutions to equations in classical analysis.
IV. Linear programming and game theory.

V. Functional equations and functional calculus.

There follow illustrative examples for each of the classes listed ~bove.

The problem classes I and IV.

In the field of economics much use is made of so-called “input-output” ma-
trices or arrays. The next Example in the logistics of nutrition and food supply
gives the basic idea. .

Example 1.1.1. Suppose that the nutrients: PROTEINS (P), FATS (F),
and CARBOHYDRATES (C) for a population are to be derived from the eating
of MEAT PRODUCTS (M), DAIRY PRODUCTS (D), and GRAIN PROD-
UCTS (G). Suppose further that the following table represents the proportions
of the nutrients that the three kinds of foods provide. Slanted capital letters
such as P, F, ..., G are symbols representing both the iterns PROTEINS, FATS,

., GRAIN PRODUCTS and the amounts of these items as well. Similar re-
marks apply later as the example is elaborated. (Simple numbers have been
chosen so as not to obscure the essential strrcture. Since only their proportions
are of consequence these are chosen to be rea.sonaﬂe in what follows. Units of
measurement are not identified.)

M D |. G
P 7 1 2
F 4 1 0
G 0 2 | 23

Table 1.1.1.

The array of numbers in Table 1.1.1 above is the input-output matriz
relating the “inputs” MEAT PRODUCTS, DAIRY PRODUCTS, and GRAIN
PRODUCTS to the “outputs” PROTEINS, FATS, and CARBOHYDRATES.
Thus the input-output matrix

W [T1 2
A= 14 1 o0
0 2 23

is the array of coefficients in the left members of the following system of equa-
tions:

Chapter 1. ORIENTATION



TM+D+2G=P
4M +D+0G=F (1.1.1)
OM +2D +23G = C.

These equations show how the inputs are combined to produce the desired
outputs.

The horizontal strips of numbers in a matrix are its rows. The vertical strips
of numbers are its columns. The numbers are called the entries. The entry in
the ith row and the jth column is called the (¢, ) entry. Thus in A the (2,1)
entry is 4, the (3,3) entry is 23. A matrix having m rows and n columns is called
an m x n matrix and its size is m X n. Thus A is a 3 x 2 matrix of size 3 x 3.

[ Matriz is Latin for — womb, pregnant animal — and is
derived from mater — mother. The Indo-European root is ma —
mother — and appears in — mama, mamma, mammal, maieutic,
etc. Matriz occurs in many forms of discourse in which the word
is used to describe a mold or a medium that holds something or a
group of things in place, e.g., the womb holding the fetus, the mold
for casting type faces in printing, etc.

The use of matriz in linear algebra stems, perhaps, from the
way in which matrices are depicted, namely as arrays of numbers
bracketed by parentheses that hold or contain them.]

Suppose next that MEAT PRODUCTS, DAIRY PRODUCTS, and GRAIN
PRODUCTS may be supplied from CATTLE (B), SHEEP (S), HOGS (H),
RICE (R), WHEAT (W), and CORN (K).

(To avoid a collision between “C” for “CARBOHYDRATES” and “C” for
“CATTLE” or “C” for “CORN,” “B” serves for “CATTLE” (Latin “BOS” for
“CATTLE” or English “BEEF”) and “K” serves for “CORN” (“KERNEL”).

B|s| BR[| W]| K]
M| 2] 1] 3] o] of o
D1 | 1] of o0of of 2
G| o| o) o 4| 6] 10
Table 1.1.2.

The array of numbers in Table 1.1.2 is the 3 x 6 input-cutput matrix

we [2 13000
11 10 00 0 2
0 0 0 4 6 10

reiating the “inputs” CATTLE, SHEEP, HOGS, RICE, WHEAT, and CORN, to
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the “outputs” MEAT PRODUCTS, DAIRY PRODUCTS, and GRAIN PROD-
UCTS.

If specific numbers are given for the demands P, F, and C then solving the
first system (11 1) for the three unknowns M, D, and G reveals the amounts of
MEAT PRODUCTS, DAIRY PRODUCTS, and GRAIN PRODUCTS needed to
satisfy the demands. The resulting values for M, D, and G can then be entered
into the system of equations derived from Table 1.1.2 relating M, D, and G to
B, 8,1, R, W, and K, namely

2B +1S+3H +0R+0W + 0K = M
10B +15 +0H + OR+0W + 2K = D (1.1.2)
0B + 05 + 0H + 4R + 6W + 10K = G.

Replacing 24, 7, arnd G in (1.1.1) by the expressions in (1.1.2) leads io a third
sysiem, namely

24B + 85+ 21H +8R+12W + 22K = P
18B+55+12H +0R+0W + 2K = F (1.1.3)
20B + 25+ 0H + 92R + 138W + 234K = C.

The coefficients in the lefi members (1.1.3) form the 3 x 6 input-output matrix

/24 8 21 8 12 22
c¥i{18 5 12 0 6 2
20 2 0 92 138 234

relating the raw materials CATTLE, SHEEP, HOGS, RICE, WHEAT, and
CORN to the desired nutrienis PROTEINS, FATS, and CARBOHYDRA 'ES.

The coefficient 24 of B in the first equation of (1.1.3}) is the (1,1) entry
in the matrix above. How that coefficient is calculated exemplifies how all the
coefficients in (1.1.3) are found:

P=7M+D+2G
=7(2B + 15 4+ 3H + OR+ OW + 0K) + 1(10B + 15 + 0H + OR + 0W + 2K
+2(0B 405+ 0H + 4R+ 6W + 10K)
=(7-241-1042-0)B +--- (1.1.4)
= 24B +---. :

The coefficients, 7, I, end 2, in the formula preceding B in (1.1.4) come from
row 1 of A. The coefficients, 2, 10, 0, come from coluran 1 of of B. So thut row
1 of A combined in 2 specisl way with column 1 of B provides the (1,1) entry of
¢ Tx$
+
1x 10| =24.
4
2x0
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Row 1 of A is rotated 60° clockwise, its entries are maiched against the entries
in column 1 of B, the matched entries aze multiplied {ogether, and the resulis
are added together.

A careful examination of the way in which C above is derived from A and E
shows that the lllustration above is a model for all the calculations of the entries
in C.

The array of coefficients in the left members of (1.1.3) is related to the arrays
in the Jeft members of (1.1.1) and (1.1.2) in a manner that is the genesis of the
idea for multipiying matrices. In other words

‘7T 1 2 2 1 3 00 ©0 24 8 21 8 12 22\
(4 1 0 10 1 6 0 0 2 18 5 12 0 0 2
\0 2 23 0 6 0 4 6 10/ = \20 2 092 138 234 }
A B c
AB = C.

Note that the $ x 6 matrix C arises from the particular combination of the 3 x 3
matrix A and the 3 x 6 mairix B. Note also that 3, the number of columns of
A, is the same as 2, the number of rows of B.

More generally if

/a1 ... 8ia by ... blq
A={ : - .| and B=

\ Gyt  -er Qpan bnl . bﬂq

ther A is an m x n matrix, B is a n X q mztrix, and their matriz product or
sitnply produci AB in the order just written is defined to be the m . g matrix

Pir .-+ Pig

Pl e P";q

in which the (3, j) eniry mj; in AB is given by the formula:
Pi; = ity + @iabaj + -0+ + Ginbyj.

In tighter form the preceding formula may be written:

;T:Z;ﬂ?@j' 1<i<m, 1<j<gq

The matck-ap of the indices as shown above is helpful in remembering the
formula. The index of surnmation (K) is emphasised in boldface. The equation
above says that #he entry im the ith row and jth column of the matrix AB arises
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by summing the products of the matched corresponding elements of the ith row
of A and the jth column of B. Thus, with boldface letters markiig the relevant
entries, and with other entries suppressed, the formula above can be visualized
as

aj1 ... A&jn =1{... Py
2o 8 N B e P

X T nxr m X q

The ith row of 4 is rotated 90° clockwise, aligned with the jth column of
B so that corresponding entries match up, the matched entries are multiplied
together and the products so formed are added together. The result is the (i, )
entry in AB:

aj; X byj
&
aj3 X sz

+
ajn X bnj

The matching of the entries in the jth column of B with the entries in the ith
row of A reflects the need that the number n of columns of A be the same as
the number n of rows of B. No restrictions are placed on the number of rows of
A or on the number of columns of B.

Only because n, the number of columns of A, is the same as n, the number of
rows of B, can the product AB as defined be formed. Conversely, if the number
of columns of 4 is the same as the number of rows of B, then the product AB

as def(‘;ned_ can be formed. . .
Als an m X n matrix and B is a p X ¢ matrix then AB as defined can be

formed if and only if (“iff”) n = p. The matrices A and B are called compatible
for multiplication iff n = p. Their product AB is an m x ¢ matrix.

Two different populations in widely separated parts of the world may have
different agricultural techniques, different breeds of farm animals, different kinds
of soil, etc. In that event the numbers in array Table 1.1.2 might well be
different for the second population, e.g.,

Chapter 1. ORIENTATION



B S H R w K

M 1 2 5 0 0 0

D 6 2 0 0 0 5

G 0 0 0 8 5 6
Table 1.1.3.

If these two populations provide equal amounts of B, S, H, R, W, and K
then the total production of the two populations of M, D, and G is governed by
the array below:

B|S|H|R|W]|K
M| 3| 3] 8] of of o
D |16 | 3| 0o of of 7
G| o of of 12| 11| 16

Table 1.1.4.

in which the entry in each box is the sum of the entries in the counterpart boxes
of Table 1.1.2 and Table 1.1.8.

The array in Table 1.1.4 might be regarded as the sum of the arrays Table
1.1.2 and Table 1.1.8. The idea of adding entries in corresponding buxes of two
matched arrays is the genesis of the idea of addition of matrices. In mathematical
terms addition of matrices may be illustrated as follows:

2 1.3 00 0 1 2 5 0 00

1010002+620005

0 0 0 4 6 10 00 0 8 5 6
B D

B+D=g.

Each entry in G is the sum of the corresponding entries in B and D. Two matrices
A and B may be added together iff they are of the same size, e.g., each matrix
should be a 3 x 6 matrix, like the matrices B, D. The sum of two matrices of
equal size is another matrix of the same size, e.g., G is, like B and D, a 3 X 6
matrix. Two matrices of the same size are called compatible for addition.

Section 1.1. Where linear algebra is useful and used
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The term “compatible” alone is to be interpreted in the context where it is
nsed, e.g., in matrix multiplication or in matrix addition.

Matrix addition and matrix multiplication are the basic operations of matrix
algebra. In the preceding survey and examples these operations crop up naturally
in the course of organizing the analysis of the question of providing nutrition.

THE ELEMENTS OF MATRIX ALGEBRA

The following paragraphs constitute a short excursion into matriz algebra,
the sibject of combining matrices in various ways. For the most part each entry
259 10t the matrices to be considered is a 'complex number. Thus there is a symbol
i such that i = —1 = (—4)? and there are two real numbers r and s such that

awdéfr+siec, rs€R

When geometric interpreiations of linear algebra are desirable each entry is taken
to be real. Following the excursion the discussion of the applications resumes.

In formal terms the addition of two matrices can be deseribed by the fol-
lowing equation:

a1 . Gin b . bia ann+din . @i+ bia
v . . + § s : = % F g
Qmi + Qmn b1 - bma ami +bmi . Gmn + bmn

(-9
a
1Ly

Thus if the matrix )
a + Qin

@m1 - Omn
then the formulsa for the (r,¢) entry of

def
(CiJ)::,L = o)y iy= =t (bij)::f;l

is denoted (ay;)/72,

is
Cre = Gre + bye.

It is natural to write
/ der def
(as5)ig2 + (ai5)Ty2, = 2(a; 7] = (2045)72,

and more generally, for any number ¢, t(a;;)7;2, = def (tai;)i2, .

Exercise 1.1.1. If the two populations provide not equal amé&iffrs of
B, S, H, R, W, and K but amounts in the ratio 2 : 3, what is the counterpart
of Table 1.1.47
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