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FOREWORD

One of the most significant technological advancements of this century has been to account for
the local concentration and intensity of stresses around flaws and their effects on design, perform-
ance and maintenance of modern structures. The development of flaws in their various forms result
from material processing, manufacturing practices, environment and in-service operating condi-
tions. The damage due to the presence of initial flaws, if not controlled from further growth, often
leads to a premature failure which is not predictable from overall material behavior.

The structures and materials in aerospace applications are subjected to complex cyclic loading
and extreme environmental conditions including high temperatures. With pre-existing flaws, they
offer limited resistance to damage accumulation and failure. In conventional metallic structures,
the discontinuities and corroded surfaces have provided favorable conditions for crack initiation.
In composites, the damage at the interfaces and at the regions affected by impact often initiates
failure. The mechanics and mechanisms of fracture and damage for these applications have be-
come critical areas of research and in recent years, the developments in these areas have been
rapid. A symposium was planned to bring together experts in various areas of fracture and damage
to exchange their results and observations. It was held on November 9-10 during the 1992 ASME
Winter Annual Meeting. The symposium was sponsored by the Structures and Materials Technical
Committee of the Aerospace Division of The American Society of Mechanical Engineers. Three
sessions, two on modeling and analysis of fracture and damage, and one on modeling and ex-
periments, were organized and presented.

This ASME volume contains papers presented at these sessions. Most papers deal with the
mechanics of fracture and damage at elevated temperatures. The subject discussed here is not
limited to a single material system or a class of material. Thus, this work brings some of the latest
developments in the area of fracture and damage in a single volume. In particular, modeling,
analysis and experimental techniques for interface damage in composites including the effects of
residual stresses and temperatures; and crack growth, inelastic deformation and fracture param-
eters for isotropic materials are discussed.

In the first paper, Valanis discusses a local damage theory and shows a close agreement with
the linear elastic fracture mechanics when the numerical analysis uses a particular finite element
size called a “characteristic size.” The unified view on fracture and damage is substantiated by
experimental data on fracture stress. In the following paper, Kuo et al. present an integral formu-
lation of a new parameter for time dependent crack growth at elevated temperatures and variable
load conditions. For small scale creep conditions, this parameter is similar to C, and the two differ
only by a proportionality constant. Brust and Krishnaswamy present results of a computational
study of time dependent crack growth at elevated temperatures using various constitutive relations.
In the next paper, Shivakumar reports 3-D stress intensity factor solutions for centrally cracked thin
plates under anti-plane loading using a virtual crack closure technique. The specimen geometry
simulates a crack near the lap splice joint of fuselage. Birman and Nagar use the principle of virtual
work to derive crack tip stresses and strain energy for orthotropic laminates reinforced by thin
tougher layers. A new p-version finite element formulation for analysis of cracked composite lam-
inates is presented by Saha et al.



In the area of fracture and damage modeling and analysis in composites, Reifsnider et al. discuss
concepts for prediction of creep rupture strength and fracture in composites at elevated temper-
atures and present a life prediction model for the effects of residual stresses, creep deformation
and activation processes. Sherwood et al. discuss thermomechanical behavior of titanium matrix
composites with thermal residual stresses. The effects of interface damage (chemical bonding loss)
is significant when applied strain is normal to the direction of fibers. A methodology to simulate
the evolution of discrete damage at the fiber matrix interface is proposed. Santhosh et al. discuss
a model to predict stress strain response of fiber reinforced metal matrix composites with fiber
matrix debonding under elevated temperatures. Newaj and Majumdar report results of a study on
deformation mechanisms in titanium matrix composites at elevated temperatures under pure com-
pressive loads. Mohan presents computational aspects of modeling plasticity in crystalline solids
from finite element view-point. A geometrically rigorous formulation of crystalline plasticity is
adopted. The predictive capability of numerical simulations is compared with the experimental
results.

The remaining five papers deal with damage modeling and experiments at elevated tempera-
tures. Chu et al. present a theoretical model for ceramics with microcrack damage due to thermal
shock by correlating elastic properties with microstructural degradaton. The model is verified using
two independent experimental measurement techniques on alumina and silicon nitride. Delale et
al. use interfacial strain energy release rate to describe monotonic stress-strain tensile behavior of
ceramic matrix composites under occuring damage. Pernot el al. report that crack growth retar-
dation occurs during sustained load at maximum in titanium aluminides. The experimental data
was successfully correlated with a linear damage summation model when modified by a blunting
coefficient. Harper and Sura discuss a model for nonlinear power law, transient creep in polyimide
films. The results show that the time, temperature and stress superposition is applicable. Liu and
Smith report experimental results for local stress strain, stable crack growth and fracture in highly
filled polymeric materials.

The editor is indebted to the Air Force Wright Laboratory, Flight Dynamics Directorate for pro-
viding the support and encouragement to organize a symposium on fracture and damage and the
opportunity to publish this volume. The assistance of Jalees Ahmad, AdTech Systems Research
Corporation to solicit papers for the session on high temperature composites-modeling and anal-
ysis is appreciated. Victor Birman, University of Missouri-Rolla, helped to review the papers for the
session in the area of modeling and experiments.

Sincere thanks are also due to Ozden Ochoa, Texas A&M University, for acquiring sessions for
this symposium, for coordinating various activities for the symposium, and the timely publication
of this ASME volume. Special thanks are also due to the staff of the ASME Technical Publishing
Department for their cooperation.

Arvind Nagar
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SOME RECENT DEVELOPMENTS IN
CONTINUUM DAMAGE THEORY

K. C. Valanis
Endochronics Incorporated
Vancouver, Washington

University of Portland
Portland, Oregon

ABSTRACT

In this paper we address a number of questions
associated with local and non-local damage theories. The
limitations of local theories are pointed out. Yet we show
that the local theory proposed previously by the author [1]
has certain utility when a ‘characteristic’ element size,
which is defined, is used in the computations. Its physical
validity is put to the test in the solution of the problem of
a plate under tension with a central crack, at various
angles to the direction of pull. The fracture stress, as a
function of the crack length or inclination angle is
compared with experimental data on grey cast iron. The
agreement is excellent.

The non-local theory, also previously proposed by
the author [2], is briefly introduced and discussed in the
context of the initial value problem, which, in the case of
the non-local theory, is hyperbolic but not so according to
the local theory. Two numerical solutions [3] (one local
and one non-local), to the initial value problem of a semi-
infinite elastic rod, subject to a step velocity at one end, are
discussed. = The non-local solution converges to a
physically realistic limit, while the local solution
degenerates to a null solution as the grid size tends to
zero.

INTRODUCTION

During the last decade we have witnessed the rise
of continuum damage theory to a level of analytical
sophistication. See typically Refs. [4-31]. With the
exception of some recent papers, these theories are of the
“local” type in the sense that damage in a neighborhood is
a function of the history of the mechanical state of that
neighborhood. As was discussed in a previous article [4],
the difficulty with local theories is that in the softening
regime i.e., when:

doij deij <0 (l)

the governing equation of the initial value problem is no
longer hyperbolic and uniqueness of the solution cannot
be proved. A similar situation arises in the case of the
boundary value problem.

When a numerical solution is attempted in terms
of a finite element scheme, it transpires that the solution
is excessively sensitive to the element size and gives rise
to physically unrealistic predictions as the element size
tends to zero. To remedy the problem we [2] introduced a
non-local damage theory where the damage process of a
material neighborhood is influenced by the entire strain
field of the material domain. To demonstrate the
differences between the two theories, an axial wave
propagation problem was solved by Murakami, Kendall
and Valanis [3], using a finite element technique. The
problem was that of a semi-infinite rod, initially at rest, to
which a step velocity of - 0.6 m/s was applied at one end.
It was found that the ‘local’” solution, in terms of the
particle velocity history at a point along the rod,
degenerates to a null solution as the element size goes to
zero. On the other hand, the ‘non-local’ solution
converges to a physically realistic limit. See Figs. 1 and 2.

However, another item of interest was observed as
a result of the analysis. When a particular finite element
size, a_characteristic size, was used in the numerical
analysis in conjunction with the local theory, the solution
was not far from that obtained by the non-local theory.
On the basis of the local theory alone, the physical
meaning of the characteristic size is not clear, but it
acquires a clear meaning in the context of the non-local
theory. This question will be taken up again in the section
on the non-local theory and its relevance to the
application of the local theory to the numerical
determination of the fracture stress of a thin cast iron
plate with a central sharp crack inclined at various angles
to the direction of pull.
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Figure 1. Velocity history at distance 0.4 m from end of
semi-infinite rod (local solution).
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Figure 2. Velocity history at distance 0.4 m from end of
semi-infinite rod (non-local solution).

This problem is critical in proving the worth of
continuum damage theories because often, fracture occurs
by the extension of one dominant crack, in the presence of
distributed damage. Hence, a damage theory, must deal
with the presence of sharp cracks. Also Linear Fracture
Mechanics (LEFM) can deal successfully with fracture due
to sharp cracks in Model conditions. A continuum
damage theory, therefore, should have a common
boundary with LEFM. That the present local theory has
that property has now veen demonstrated. It and LEFM,
give values of fracture stress that are in close agreement
between themselves and those determined
experimentally. Evidently the grid size chosen in the local
analysis had the ‘characteristic’ size.

LOCAIL DAMAGE THEORY

The basic premise of the theory is that directed
damage may be represented by a tensor valued function 9,

“the integrity tensor”, which appears explicitly in the
equation for the free energy and the constitutive equation.

Thermodynamically, ¢ is an internal variable. In linear
elastic-fracturing solids, the free energy density is given by
Eq. (2a) and the constitutive relation by Eq. (2c), where A
and p are the Lamé constants.

v =(A/2)¢yugiEn + Hik D€l (2a)

Thus, since:

g=dy/de (2b)
it follows that:

Ojj = Ay dri€ + 21 Pi b€k (2¢)
Equation (2.1a) is a statement to the fact that:

W =1/2Cyq &; €k (2d)

~r

where C, the stiffness tensor, is homogeneous and

quadratic in ¢. There are two questions regarding ¢: How

it is related to the material damage at some microscale and
(ii) how it evolves with the history of deformation. In
regard to question (i), it was previously shown, Valanis

(1987), that if in a material element a principal values of ¢,

say ¢r, is zero,, and F?r is the eigenvector of ¢,, the traction

on a surface normal to RT, then is zero and the element
cannot support traction on that surface. Thus, ¢,

represents damage on a plane normal to N, and as such
it is a measure of the effective area in that plane. Hence,

when ¢, = 0, an effective plane crack has developed across
the entire element on a plane normal to N Note that if
¢r = 1 the damage on that plane is zero. In regard to
question (ii) i.e., the evolution of ¢, Eq. (3) was proposed:

de" =-(Q5) " de* 3)

In the following notation: d¢r is the change in principal
component ¢ of ¢ and nf are the eigenvectors of d £; £ is a

damage coordinate and Qf, a “damage force” acting in the

directionT, i.e.,

QL= nirnj"Qij (r, not summed) 4)

The damage coordinate, &; is given by Eq. (5) i.e.,

i IR r l'> r
dérz{kde ;de">0, €5 20,Q%>0. -

0, otherwise



where &f = sijn{n§ (r, not summed) and k is a positive
scalar.
To determine Q we appealed directly to

thermodynamics. Since ¢ is an internal variable, the
thermodynamic force Q that drives the damage process is
given by the relation

Q=-dy/d¢ ©6)

We now reason as follows. The direction of the damage
increment - d¢ is dictated by the eigendirections @& of the

increment of strain d€. In other words d¢ and d £ are
coaxial. The force driving the damage process in the

direction W& is then Q3, which is Q projected in the

direction W& . Thus

o__o o
Qn =nn, Qij

i (@ not summed) (7)

It follows from thermodynamic principles that:
dg®/dE” =bQy ®)

where b is a material scalar and
o
dé“=<§de ,dE% 20, ©)

k having the significance of a damage propensity
parameter.  But, the Clausius-Duhem dissipation
inequality, i.e.,

—%-dg»o ;

£

must be observed. Thus in view of Egs. (6) and (8) and the
fact that

dg; = §d¢" nf nf‘ (11)

T being eigenvectors of d9, it follows that

dy a9 o «
-———-.d =—2 E—— . - .
70 ? ad¢ 34’1,' ;" n; >0 (12)

Since Ineq. (12) must be true for each « individually, i.e..,
for each independent fracture mechanism, then the

following inequalities must be satisfied for all a:

P
—d¢® 3;:,- nn®>0 ; (9w/a9) ng* n¥>0 (13,14)

for all &, whenever 1d¢®| # 0, since d¢@ is negative when
non-zero. We now have the full set of conditions that

govern the evolution of the damage coordinate d&¢.
Thus:

dE® = kde® (15)
whenever:
dy
(04 o o _ o
de“ >0 , €n20 ’ Wmni n]. >0 (16)

but dé& = 0 otherwise. We write Eq. (8) in its explicit form
given below:

dg® = -bd&*(Aeji(puiew) + 2udieie ) n n¥  (17)

Material Parameters and Their Experimental
Determination.

With b = 1, there are three constants to be
determined: k, the fracture susceptibility and A and p. Ina
uniaxial test Young's modulus E was determined, while v
was set equal to 0.3. Thus A and y were found to be 15 x
103 and 10 x 103 ksi, respectively. The constant k was
determined from a simple tension test on an uncracked
specimen. Under these conditions

1/3
Olmax = E(1/2keE)" (18)

where loge = 1. With o|max (experimental) = 40 ksi, k is 2 x
103 (ksi)-1.

COMPUTATIONAL STUDY.

The computations consisted of developing a Finite
Element Program and computing the deformation, stress
and damage fields in a flat plate in with a central crack of
various lengths. A grid of square elements was used, with
each of unit length equation of 3/64 in. The domain was
16 units wide and 21 units long. Stress, strain and damage
fields were obtained. Longitudinal displacement control
(with free transverse displacement) on the outer boundary
was used. All other boundaries were stress-free. An
incremental displacement of 2.5 x 10-3 units was applied.
The computations were performed on a VAX 750
computer. For details see Ref. [1].

Figure 3 shows the calculated curve of fracture
stress versus crack length, when this varied in size from
two elements to fourteen. Also shown, are the
experimentally determined values of fracture stress on
gray cast iron,. The experiments were carried out at the
Materials Laboratory of the University of Portland and
have been reported previously [16]. The comparison
shows excellent agreement between calculated and
experimental data.

Figure 4 shows the damage distribution along the
crack line, when the half-crack is one unit long. The
calculated damage away from the crack is indeed
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negligible. In Fig. 5 we show the predictions of LEFM
against a backdrop of experimental values. Excellent
agreement is again shown with the exception of very
small cracks. Figure 6 is a comparison of the experimental
and theoretical values of fracture stress, where these are
functions of inclination of the crack to the direction of
pull. Again agreement with experiment is close.

THE NON-LOCAL THEORY.

The theory was given in detail in a previous paper
[2]. Here we give its essential features. The difference
between the local and the non-local theory lies in the
definition of the damage coordinate &. In the local theory
dé&; is given by Eq. (5) in conjunction with Egs. (4) and (6).
To reiterate,

dér =k I'lirI'IJr deij (19)

provided that the attendant inequalities discussed

previously are satisfied.
In the local theory we introduce a non-local strain

increment field di—:iG]. where:

9= " Jna
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Figure 5. Comparison of LEFM prediction with
experimental data.
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dgg = jk(xi x4 )i (x{)dV (20)

A%
where k() is positive symmetric function in x; and x'j.
We then introduce the global damage coordinate dé(;’(xi)
where at x;:

déF =ninf dey’ 1)

provided that de; > 0, e; > 0 and Q; > 0, otherwise
ds? =0. Then, if d?;? >0,

dé, =deS 22)

otherwise d&; = 0.

Notice that, in the non-local theory, the constant k
of the local theory has been replaced by the influence
function k(xj,x’j). For initially homogeneous materials:

k(x;,x}) = k(|x; - xil) (23)

Thus the local theory is a degenerate case of the
non-local theory when k(x;) is proportional to the Dirac
delta function. Evidently k(xj) has a maximum at xj = 0

and decays to zero as |xjl — . The rate of decay is
indicative of the non-locality of a material.

The normal distribution function is an evident
candidate for k(x). In this case:

k(x)= ko\/b/—n:exp(—bxz) (24)

Note that k,°! J.Z k(x)dx = 1 and k(x)/ko — &x) asb — eo.

In a three-dimensional domain, we set:
3
k(x; —x})= ko{b/n}é exp(—bpz) (25)

where:

2
P2= ) i) @

In a finite element analysis, where the stress and
strain field in each individual element are uniform, the
global strain tensor field increment is represented by the
vector of the global strain increments in the individual

elements. Thus if d 3;:2 is the global strain increment in

element o then Eq. (20) reduces to the form:

deC =k,pde 27)
~B

T

where kop is the influence matrix whose elements are
determined from Eq. (20) in conjunction with Eq. (26).
Thus, if in a material domain the mean distance between

elements o and Bis pogthen, approximately,
3
Ko = AV ko {b/7} 2exp{-b7pgg) (28)

presuming that the finite elements are equivoluminal.
The error implicit in the calculation decreases as the root
mean square dimension of the element tends to zero.
Note that the values of components of kg depend on the
size of the grid!!

Of great interest is the case where the root mean
square dimension of the element is equal to the spread of
the distribution, i.e., when:

AV = {b/n}3/2 (29)

Then, because the influence function decays rapidly with

Pap, only the diagonal terms in kgp are significant (as a
first approximation). Hence:

deC =k, de (30)

~o ~o

Notably, the non-local theory reduces to the local form,
but this is true only when the finite element size has a
characteristic value defined by Eqg. (29). Specifically one
cannot vary the size of the finite element without the full
matrix kep coming into play. Therefore, the accuracy of
the solution by the local theory is limited by the
characteristic size, which is fixed.

The above analysis explains the curious result
obtained by Murakami, Kendall and Valanis [3] in the
numerical solution of the wave propagation problem,
discussed previously, where the local theory led to results
that were close to those of the non-local theory, for a
specific (but not knowable) size of the finite element grid!
It also corroborates the validity of the finite element
analysis of the plate with a central crack. The implication
is that the finite element size chosen was in fact close to
the characteristic size, which therefore may be determined
by the solution to such a problem.

Remark.

We close this section by pointing out that the
excessive dependence of the solution to the initial value
problem on element size, cannot be remedied by letting
the damage susceptibility parameter depend on the
element size. Such dependence would lead to a loss of
uniqueness of the solution to boundary value problem of
a homogeneous domain under homogeneous tractions.
In the absence of damage the solution to this problem by a
finite element technique is exact, unique and independent
of element size. However, in the presence of damage,
different finite element sizes will give rise to different
solutions in view of the size dependence of the
susceptibility parameter.



EFFECT OF SIZE OF MATERIAL DOMAIN ON
STRENGTH.

In the above section we discussed the effect of finite
grid size on the character of the numerical solution.
However there is another “size effect”, that of the
dependence of strength on the size of the material
domain. For the sake of reference we shall call this the
Domain Effect as opposed the grid size effect which we
shall call the Grid Effect. It is of interest that the local
theory does not predict the experimentally observed
Domain Effect, when it should, and yet it gives rise to the
Grid Effect when it should not.

One might argue around this difficulty by
presuming that no material domain is entirely damage-
free in its reference state, and introducing the Weibull
“predominant crack theory” according to which fracture
occurs as a result of a flaw, the expected size of which
increases probabilistically with the size of the specimen.
The fact is, however, that if a specimen is homogeneous
and, hence, statistically uniform, a flaw is equally likely to
occur anywhere in the specimen. If then fracture
originates at the site of the largest flaw, then the fracture
surface is equally likely to lie anywhere in the specimen.
This is certainly not true in the case of fracture under axial
tension in light of the experimental evidence that fracture
occurs predominantly near the center of the specimen.

In contrast the non-local theory, quite correctly,
provides insensitivity of the solution to grid size while it
predicts the Domain Effect. This is because the increment
in damage is proportional to the increment in the damage
coordinate d¢, which increases with the size of the
material domain! The non-local theory also predicts
fracture at the center of a specimen under uniform tensile
strain as shown in Ref. [2].
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ABSTRACT

C, has been found to be an effective parameter to
characterize steady-state and transient creep crack growth rates.
An integral formulation for computing C numerically is
proposed in this paper, which complements existing C,
formulation used in laboratory measurements.

INTRODUCTION

The C, parameter defined by Saxena [1] is a generalization
of C* but is different from the C(t)-Integral [2]. C, generalizes
upon the energy rate interpretation of C* as follows. Consider
several identical pairs of cracked specimens. Within each pair,
one specimen has a crack length a and the other has an
incrementally larger crack length a + Aa. The specimen of each
pair are loaded to various constant load levels Py, Py, Ps, . .. P
etc. at elevated temperatures, and the load-line deflection as a
function of time is recorded (Figure la). The load-line
deflection due to creep is V.. It is assumed that no crack
extension occurs in any of the specimens and the instantaneous
response is linear elastic. At a fixed time, the load versus
deflection rate, V., behavior is plotted for all specimens. A
schematic of the expected behavior is shown in Figure Ib.
Several such plots can be generated from these tests by varying
time.

The area between the P-V,, curves for specimens with
crack length a and a + Aa, is called AU;’ (the subscript denotes
that this value is at a fixed time, t). The C, parameter is given
by the following equation,

c --12U )
B da

where, B is specimen thickness. As t-e, C;=C" by definition
because dU," / da = dU"/da under steady-state conditions.

C, can be measured at the loading pins and can also be
calculated as will be discussed later. It has also been shown to
be directly related to the rate of expansion of the creep zone
size in the small scale creep region [3] and it may then be
argued that the rate of crack tip damage accumulation must
scale with the rate of creep zone expansion. Thus, C, can be
expected to characterize the creep crack growth rate in the
small-scale creep and the transition creep region. This has been
borne out by a considerable amount of data [4].

As discussed in Reference 5, C, appears to be the best
parameter, among C,, C(t), K and C', for characterizing creep
crack growth of titanium intermetallics under transient as well
as steady-state creep. The same behavior for steel has been
reported by Saxena and his co-workers (see e.g., [3]) in their
experimental results. The good correlation between C, and
creep crack growth can be attributed to the fact that C, is
proportional to the rate of expansion of the creep zone [3],
which characterizes the damage zone at the crack tip region
under creep conditions.

Although both C, and C(t) are related to the crack tip
damage (or stress) under creep conditions, C, can be readily
measured from load line deflection curves in a test while C(t)
can only be computed. On the other hand, C(t) is easier to
compute than C, for structural components. This paper
reexamines the definition of C, and provides a line integral
formulation for C, as well as alternative ways of computing C.

PSEUDO-POTENTIAL P* AND C,

For a two-dimensional structure, we define pseudo-
potential P* as

P'=f“’T,|iids—fA W* dA @)

where A is the entire body, dA, is the boundary of A on which
traction is specified, and W" is defined by
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It is worth noting that, even though the expression of W*
in equation (2) looks simple and somewhat familiar, W* does
not bear any physical meaning. The first term in equation (2),
which is the total power which flows into the body at a given
instant, depends only on the current state (stresses, strains, and
strain rates) of the body. On the contrary, the second term in
equation (2) is history dependent. In other words, for a
structure body A, the first part of P is a function of its current
state while the second part of P* depends on the loading path
from time zero.

For a stationary crack, we then define another quantity
Co(t) as

where a is the crack length. It will be shown later in this paper
that C, and C, are uniquely related in small scale creep and
steady-state creep conditions. It should be noted that A in
equation (4) is the entire body and equation (4) is defined for
two stationary cracks at length of a and a+ Aa under the same
loading conditions. The subscript "0" of C, stands for the outer
boundary. By following the same procedure as that used by Rice
[6] in deriving the well-known J-integral, it can be shown that
equation (4) can be reduced to

C.) =f(W' ny - T, 4y ) ds ‘f(W'.- -0y €,) dA
a A

COlat - [ W, -0, ¢,,)d4
A
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where A is the whole structure body and JA is the entire outer
boundary of the body. Thus, the new parameter C, defined in
equation (4) is nothing but an area integral plus the C(t)
integral [2] computed along the outer boundary of the body.
The area integral in equation (5), however, is not always zero
since, in general, W" is a function of &, oy, ..., implying W*,
# oyéij,a. The inequality of C, and C(t) has also been observed
numerically by Bassani, et al, [3] and Leung, et al, [7]. Further,
like C, and C(t), C,(t), in general, is not path independent.

STEADY-STATE CREEP

From equation (5), it can be easily deduced that, at large
times t-oo,

C)) =Cl) =C) =C* = [ (W* ny - T, i, )ds (6)
r

where T' is any integration contour which encompasses the crack
tip counterclockwise since
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W‘ = W. (éll) (7)
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is true under steady-state creep conditions. Therefore, for
steady-state creep, C’, C(t), C, and C, all represent the same

physical quantity.
SMALL SCALE CREEP

We next examine the behavior of C, at the other end of
the time spectrum, very small times t-0. As illustrated in Figure
2, when the elapsed time t is much less than the transition-time
tr defined by

tr = K2 (1-v) [ [E(n+1)c”] )

the creep dominant zone A; is much smaller than the
surrounding elastic zone A.. The creep dominant zone A; has
the same shape as the creep zone A, defined by Riedel and
Rice [8] but is six times in size. The latter is the locus of points
where the equivalent effective creep strain equals to the
equivalent effective elastic strain. As will be shown later in this
paper in an example problem, it is found that good agreements
can be achieved consistently for a wide range of power-law
creep exponents n when A/ is set to be six times the size of A,
defined by Riedel and Rice [8]. For small scale creep, it can be
argued that

fW‘dA =f fW‘dA 10)
A /

Al A

WdA + [ WdA =
< A' 3
since integration of W* over the elastic region A, is negligible
compared with the contribution from the creep dominant
region A;. From equation (10), it can be seen that A has to
be larger than Ac because at the boundary of A, total creep
strains equal to total elastic strains and the W* values at the
boundary of A, are still not negligible. Also, the net power
dissipated in the elastic region is near zero, i. €.,
[ Tii, ds =
24

[ Ti, ds 1)
7

aA

¢

With equations (10) and (11), C,(t) defined in equation (4)
now reduces to
d . "
0=+ [zfl T, ds - Af W* dA] (12)

(3 3

where z=1 under load-control conditions and z=0 under
displacement-control conditions. It is worth noting that C* was
defined [9] originally under displacement-control conditions
while C, was defined [1] originally under load-control conditions.
That is, the P-V curves shown in Figure 1 should be constructed
by running constant displacement rate tests when measuring C’
but constant load tests when measuring C. However, at steady-
state creep conditions, both constant load tests and constant
displacement rates will lead to the same P-V curve due to the



fact that P and V at steady-state creep conditions are uniquely
related. The same conclusion can not be drawn for C, at small
scale creep or transition creep conditions unless it is for a
constant load problem. For a compact-tension specimen with
power-law creep under a constant load P, the P-V relation [11]
has been shown to be,

_ 4x(1-v®) Py F* 2(n-1) 4-(-3)/a-1) (13)
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where « = (1/2 n)[(n+1)¥1.38n]%@D for 3<n<13, A =¢,/0,,
B is thickness, W is width and F is a K-calibration factor
(F=(K/P)BW¥).

Inside the creep dominant zone A¢, the overall strain rate
is determined by the power law relationship. Thus, in Ag

. _ n

ety 0% "

and the stresses, strain rates, and displacements behave
asymptotically like the HRR field [8,12,13]:

o, =0, €0 _yuaen 5,(6) (15)
e, I r

8, = &lSdpien g, (o) 16)
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where the dimensionless functions I, G, €; and 4 have been
tabulated by Shih [13] and Symington and Shih [14] for various

n values, o, is the yield strength, and €, is the strain rate at o,,.

In equation (12), the creep dominant zone A¢ is not fixed
in space but is moving and changing in size with different crack
lengths, implying that the differentiation procedure used by Rice
[6] in deriving J is not applicable here.

We further assumed that the creep zone for the stationary
crack of lengths a and a+Aa are self similar. That is, it is
assumed that

r(6,8) = F(t) F,, (6) (18)

where 1. is radial distance, measured from the crack tip, of the
boundary JA, of the creep zone A.. This assumption is valid as
long as the body is under small scale creep. In fact, Riedel and
Rice [8] have shown that, under constant loads,

F,(8) (19)

r.8,9 =r’()

r20) = 21_1: X2 [W]%—u (20)

E "2x(1-vda’

1

where K is stress intensity factor and F.(8) is a non-dimensional
function.

Substituting equations (14) to (17) and applying the
differentiation technique described in Appendix A, equation
(12) can be reduced to

Culd = =2 £, (D) 172X+, cy 200

where the additional subscript "s" on C stands for small scale
creep, the factor 6 comes from the assumption that Al is six
times the size of A, and

L - Il [ 8y d s3] &3
n a4,

M, = 1l f 0, € d [slr‘(%'t) ] i
n 0A
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are dimensionless constants which depend on the creep constant
n and shape function F.(0) of the creep zone A. Under
constant load condition, equation (20) can be further simplified
as

K!1 -v9) K’

Culd = 235 FoD) (1ot 2 0)

(24)
(n+1)I E"At
2n(1-v?)

(n-1)
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Co.v (t) = ) X

%F( ) (L,+M,)

(25)

where K’=dK/da.

Creep zone shapes under mode I loading for different n
values have been computed analytically by Riedel and Rice [8].
For the creep zone shapes computed by Riedel and Rice [8], L,
and M, for n= 5, 7, 10, 15, and 20 have been calculated and are

tabulated along with F”(%) in Table 1. L, and M, values listed

in Table 1 were calculated based on the &, &, and g,
functions tabulated in References 12 and 13 by Shih and his
co-workers. To study the sensitivity of L, and M, to the shape
of the creep zones, a creep zone shape computed per finite
element method by Riedel [14] and an artificially assumed
double circle creep zone for n=>5 were also used to calculate L,
and M,, and their results are shown in Table 2. It is seen in this
table that (L, + M,), which determines C,, is not very sensitive
to the creep zone shapes tested here.

Equations (23) and (24) are very similar to the asymptotic
expressions for C, derived by Saxena [3,10]. From equation
(23), it is seen that at small scale creep, C(t) (like C,) is also



