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Mathematics for Physics
A Guided Tour for Graduate Students

An engagingly written account of mathematical tools and ideas, this book provides a
graduate-level introduction to the mathematics used in research in physics.

The first half of the book focuses on the traditional mathematical methods of physics:
differential and integral equations, Fourier series and the calculus of variations. The
second half contains an introduction to more advanced subjects, including differential
geometry, topology and complex variables.

The authors’ exposition avoids excess rigour whilst explaining subtle but impor-
tant pbints often glossed over in more elementary texts. The topics are illustrated at
every stage by carefully chosen examples, exercises and problems drawn from realistic
physics settings. These make it useful both as a textbook in advanced courses and for
self-study. Password-protected solutions to the exercises are available to instructors at
www.cambridge.org/9780521854030.
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Preface

This book is based on a two-semester sequence of courses taught to incoming graduate
students at the University of Illinois at Urbana-Champaign, primarily physics students
but also some from other branches of the physical sciences. The courses aim to intro-
duce students to some of the mathematical methods and concepts that they will find
useful in their research. We have sought to enliven the material by integrating the math-
ematics with its applications. We therefore provide illustrative examples and problems
drawn from physics. Some of these illustrations are classical but many are small parts
of contemporary research papers. In the text and at the end of each chapter we provide
a collection of exercises and problems suitable for homework assignments. The former
are straightforward applications of material presented in the text; the latter are intended
to be interesting, and take rather more thought and time.

We devote the first, and longest, part (Chapters 1-9, and the first semester in the
classroom) to traditional mathematical methods. We explore the analogy between linear
operators acting on function spaces and matrices acting on finite-dimensional spaces,
and use the operator language to provide a unified framework for working with ordinary
differential equations, partial differential equations and integral equations. The mathe-
matical prerequisites are a sound grasp of undergraduate calculus (including the vector
calculus needed for electricity and magnetism courses), elementary linear algebra and
competence at complex arithmetic. Fourier sums and integrals, as well as basic ordinary
differential equation theory, receive a quick review, but it would help if the reader had
some prior experience to build on. Contour integration is not required for this part of
the book.

The second part (Chapters 10-14) focuses on modern differential geometry and topol-
ogy, with an eye to its application to physics. The tools of calculus on manifolds,
especially the exterior calculus, are introduced, and used to investigate classical mechan-
ics, electromagnetism and non-abelian gauge fields. The language of homology and
cohomology is introduced and is used to investigate the influence of the global topology
of a manifold on the fields that live in it and on the solutions of differential equations
that constrain these fields.

Chapters 15 and 16 introduce the theory of group representations and their applications
to quantum mechanics. Both finite groups and Lie groups are explored.

The last part (Chapters 17-19) explores the theory of complex variables and its
applications. Although much of the material is standard, we make use of the exterior
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xii Preface

calculus, and discuss rather more of the topological aspects of analytic functions than is
customary.

A cursory reading of the Contents of the book will show that there is more material
here than can be comfortably covered in two semesters. When using the book as the basis
for lectures in the classroom, we have found it useful to tailor the presented material to
the interests of our students.
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1

Calculus of variations

We begin our tour of useful mathematics with what is called the calculus of variations.
Many physics problems can be formulated in the language of this calculus, and once
they are there are useful tools to hand. In the text and associated exercises we will meet
some of the equations whose solution will occupy us for much of our journey.

1.1 What is it good for?

The classical problems that motivated the creators of the calculus of variations include:

(1) Dido's problem: In Virgil’s Aeneid, Queen Dido of Carthage must find the largest

area that can be enclosed by a curve (a strip of bull’s hide) of fixed length.

(i) Plateau's problem: Find the surface of mipimum area for a given set of bounding
curves. A soap film on a wire frame will adopt this minimal-area configuration.

(iii) Johann Bernoulli's brachistochrone: A bead slides down a curve with fixed ends.
Assuming that the total energy %mv2 + V(x) is constant, find the curve that gives
the most rapid descent.

(iv) Catenary: Find the form of a hanging heavy chain of fixed length by minimizing
its potential energy.

These problems all involve finding maxima or minima, and hence equating some sort
of derivative to zero. In the next section we define this derivative, and show how to
compute it.

1.2 Functionals

In variational problems we are provided with an expression J[y] that “eats” whole func-
tions y(x) and returns a single number. Such objects are called functionals to distinguish
them from ordinary functions. An ordinary function is a map / : R — R. A functional
JisamapJ : C*®(R) - R where C*°(R) is the space of smooth (having derivatives
of all orders) functions. To find the function y(x) that maximizes or minimizes a given
functional J[y] we need to define, and evaluate, its functional derivative.



2 1 Calculus of variations

1.2.1 The functional derivative

We restrict ourselves to expressions of the form

X2
Jy] =/ fo,3,9, " y™) dx, (1.1)
X

where /* depends on the value of y(x) and only finitely many of its derivatives. Such
functionals are said to be local in x.

Consider first a functional J = [fdx in which /" depends only x, y and y’. Make a
change y(x) — y(x) + en(x), where ¢ is a (small) x-independent constant. The resultant
change inJ is

J[y+€r)] —J[}] = \/j'- {f(Y y—f—gn y/ +gn’) —'f(x,y,}',)} dx
n af
/ { d_F+O( )}
o _d (o
-[: ”?L o[ e {55 ()«

+ 0(e?).
If n(x;) = n(xz) = 0, the variation dy(x) = en(x) in y(x) is said to have “fixed

endpoints”. For such variations the integrated-out part [...]Ji? vanishes. Defining 8J to
be the O(e) part of J[y + en] — J[v], we have

_[" of _d (of
= L (ene) { dy  dx <3y’)] &

%2 8J
=fx] sy(x)<5 = )) dx. (1.2)

The function

sJaf d(&_f‘) L8

= = e s E

is called the functional (or Fréchet) derivative of J with respect to y(x). We can think
of it as a generalization of the partial derivative dJ /dy;, where the discrete subscript “7”
on y is replaced by a continuous label “x”, and sums over i are replaced by integrals

over x:

8J = Z—Sv —>/ dx(

) 8y(x). (1.4)



1.2 Functionals 3

_ 1.2.2 The Euler—Lagrange equation

Suppose that we have a differentiable function J (1,2, . . ., y,) of n variables and seek
its stationary points — these being the locations at which J has its maxima, minima and
saddle points. At a stationary point (y1,y2,...,),) the variation

8 =Y =5y (1.5)
. ;

must be zero for all possible §y;. The necessary and sufficient condition for this is that all
partial derivatives dJ /dy;, i = 1,...,n be zero. By analogy, we expect that a functional
J[y] will be stationary under fixed-endpoint variations y(x) — y{(x) + 8y(x), when the
functional derivative §J/8y(x) vanishes for all x. In other words, when

af d( af

200 o 8y’(x)) =0, x1<x<x. (1.6)

The condition (1.6) for y(x) to be a stationary point is usually called the Euler—Lagrange
equation.

That 8J /8y(x) = 0is a sufficient condition for 8J to be zero is clear from its definition
in (1.2). To see that it is a necessary condition we must appeal to the assumed smoothness
of y(x). Consider a function y(x) at which J[y] is stationary but where 6J/5y(x) is
non-zero at some xg € [xj,x;]. Because f(y,)’,x) is smooth, the functional derivative
3J /8y (x) is also a smooth function of x. Therefore, by continuity, it will have the same
sign throughout some open interval containing xg. By taking §y(x) = en(x) to be zero
outside this interval, and of one sign within it, we obtain a non-zero §J — in contradiction
to stationarity. In making this argument, we see why it was essential to integrate by parts
s0 as to take the derivative off §y: when y is fixed at the endpoints, we have [ 8)’ dx = 0,
and so we cannot find a 8y’ that is zero everywhere outside an interval and of one sign
within it.

When the functional depends on more than one function y, then stationarity under all
possible variations requires one equation

Syix)  dyi  dx

oY (), wn
) '

for each function y;(x).
If the function / depends on higher derivatives, y”, ¥, etc., then we have to integrate
by parts more times, and we end up with

_ 8 d N\ &y &
O_Sy(x)_ay dx(By’>+a’x2(ay”)_ﬁ<ﬁ>+"" (1.8)




4 1 Calculus of variations

Figure 1.1  Soap film between two rings.

1.2.3 Some applications

Now we use our new functional derivative to address some of the classic problems
mentioned in the introduction.

Example: Soap film supported by a pair of coaxial rings (Figure 1.1). This is a simple
case of Plateau’s problem. The free energy of the soap film is equal to twice (once for
each liquid-air interface) the surface tension o of the soap solution times the area of the
film. The film can therefore minimize its free energy by minimizing its area, and the
axial symmetry suggests that the minimal surface will be a surface of revolution about
the x-axis. We therefore seek the profile y(x) that makes the area

JIv] =27rf Zy\/l + % dx (1.9)
x|

of the surface of revolution the least among all such surfaces bounded by the circles of
radii y(x;) = y; and y(x2) = y. Because a minimum is a stationary point, we seek
candidates for the minimizing profile y(x) by setting the functional derivative 6/ /8y (x)
to zero.

We begin by forming the partial derivatives

ad / af 4y’
’_f = 47-[ 1 +-V/2’ ——j = ——”}/.v (110)
3 y

dy

and use them to write down the Euler-Lagrange equation

d yy'
J1492 —— | =Z=— ] =0. (1.11)
dx /l+y’2



1.2 Functionals 5

Performing the indicated derivative with respect to x gives

2 /" AV
S22 LA 4 S (1.12)

N 12Y3/2

After collecting terms, this simplifies to

1 yy//

/] +y’2 (1 +y/2)3/2 -

The differential equation (1.13) still looks a trifle intimidating. To simplify further, we
multiply by )’ to get

(1.13)

1 s
pe— X _ WP
/1+y/2 (1+y/)/

d

== ¥ (1.14)
X /1 + y/2
The solution to the minimization problem theréfore reduces to solving

L (1.15)

/1+y/2

where « is an as yet undetermined integration constant. Fortunately this nonlinear, first-
order, differential equation is elementary. We recast it as

dy y
— =,/—= -1 1.16
dx K2 (1.16)

and separate variables

/ﬂ:/yf%i (1.17)

We now make the natural substitution y = « cosh ¢, whence

/w=xfm. (1.18)

Thus we find that x 4+ a = «t, leading to

x+a

y = k cosh (1.19)



