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Preface

LINEAR Programming is a mathematical computing technique which
has been developed during the last decade; it has already been
useful in a great variety of planning problems, and forms by now
an important tool in the outfit of an ““ operational research ** worker.

The chapters of this book contain examples of applications, the
stress being throughout on the practical aspect, i.c. on arithmetic
rather than on mathematics. No attempt has been made to make
the problems dealt with completely realistic, because a clear outline
is more helpful in tracing the basic ideas than are involved explana-
tions and a long series of computations. However, the problems
are representative of those that have either occurred in practice,
or have been treated in the ever-expanding literature of this subject.

Three theoretical chapters (I, XIV and XIX) have been included
to make the book self-contained. They do not replace expositions
which a pure mathematician would like to see as other sources
exist to cater for him. A few of the practical chapters also contain
theoretical matter where needed.

Chapter II deals with one of the simplest Linear Programming
tasks: the Transportation Problem. It can be solved by very simple
routines, and the subsequent chapters (III-VI) show how other
problems can be transformed into this type, and hence solved by
the same simple procedures. Chapter VII considers another problem
which can be solved by a simple routine: maximal flow through a
network. Chapters VIII-XI reduce other problems (one of them the
transportation problem itself) to cases of this type, and these chapters
contain some of the most recent developments of Linear Pro-
gramming technique. Chapter XII explains how a certain problem
of nearly transportation type can be solved, without referring to the
most general method.

Chapter XIII introduces a problem which requires the knowledge
of a more general routine (outlined in Chapter XIV) and Chapters
XV-XVIII discuss some more problems of this type. Finally,
Chapters XX-XXIV are concerned with problems where a deeper
understanding of the theory (outlined in Chapter XIX) makes it
possible to extract more information from the solution than a plain
answer would give. Chapter XXIV, in particular, is addressed to
those who are familiar with the Theory of Games.

At the end of some chapters there are simple examples which
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vi Preface

allow the reader to test his knowledge in a practical way. References
to the literature will help him to extend his reading, if he wishes.

Only very elementary mathematics is required for the under-
standing of the book. It is hoped that the variety of cases analysed
will prove the usefulness of this new branch of applied mathematics,
and that it will be equally attractive to beginners in the field of
operational research as well as to more experienced managerial
personnel.

I should like to thank Mr. E. M. L. Beale, who has himself con-
tributed to research in this field, for many stimulating and helpful
discussions.

I am grateful to the Admiralty for permission to publish this book.

S. V.



IL
IIIL.

VL
VIL
VIIL.

% R

XI11.
XIV.

XVIIL.
XVIIIL
XIX.

XXII.
XXITII.

Contents

Preface

Introductory ‘
Transportation Problem (I)
Caterer Problem .

Production Scheduling
Transhipment

Bid Evaluation

Flow through a Network
Transportation with Restrictions
Ship Scheduling . ;
Transportation Problem (II) .
Personnel Assignment (Allocation)
Routing Aircraft .

Investment .

The Simplex Tableau (T heory)
Nutrition Problem

Airlift

Blending of Aviation Gasohnes
Smooth Patterns of Production
Duality (Theory)

Selection of Products .

Trim Loss Reduction .
Attendants’ Rota

Warehousing

Games

Bibliography



Introductory

LINEAR Programming (L.P.) deals with maximizing or minimizing
a linear expression of variables, called the ‘‘ objective function,”
while the variables satisfy given linear equations or inequalities,
referred to as constraints.

If the constraints are equations, and if their number equals that
of the variables, then there is, in general, only one solution and the
objective function is irrelevant. A genuine L.P. problem arises
only when there are more variables than equations.

1t is convenient to consider as the standard form of a L.P. problem
that where the constraints are inequalities, and where it is understood
that the variables may not have negative values. The constraints
can be transformed into equivalent equations, by adding further
non-negative (“ slack ) variables. For instance, if a constraint were
ayx; + a,x, < b, then we can write instead a,x; + a,xs + y = b.

On the other hand, if we have linearly independent equations, we
can convert them into inequalities by expressing as many variables
as there are equations in terms of the remaining ones (this is possible
unless the system of equations is contradictory) and then requiring
that these expressions should be non-negative. Another, less elegant
way of converting equations into inequalities consists in writing
each equation twice, once with the < sign and once with the > sign
instead of the = sign.

If there are also variables the values of which are not restricted as
to their sign, then they can be eliminated; such a procedure should,
however, not be applied to sign-restricted variables, because the
requirement that their values must not be negative could easily be
lost sight of. Again, a less elegant way of converting variables not
restricted in sign to variables that are so restricted consists in
replacing the former by the difference of two variables of the latter
type. It is then always possible to find solutions in which at least
one out of a pair of such variables is zero.

Of course, a system of linear inequalities or equations in sign-
restricted variables need not have any solution at all. For instance,
the system

X1+ X+ x3=35, X+ x—x,=9
1



2 Readings in Linear Programming

demands that x; 4+ x, be not larger than 5, and at the same time not
smaller than 9, which is evidently impossible.

It can also happen that a system of constraints is consistent, but
that no finite maximum (or minimum) of the objective function
exists. For example, if we wish to maximize x, subject to x;—x; = 3,
then x; is clearly not restricted by any upper bound.

Finally, we remark that the routines for maximizing and for
minimizing are analogous. As a matter of fact, the first could be
used for the second as well, since the maximum of an expression is
simply the negative of the minimum of that expression with opposite
sign.

The following definitions will be used—

A solution is any set of variables (not necessarily non-negative)
satisfying the constraints. Whenever we mean the solution of the
whole L.P. problem, we refer to the final, or optimal, solution. A
solution consisting of only non-negative values of the variables is
feasible, and one that does not contain more than m positive vari-
ables, the others being zero (m is the number of constraints) is a
basic solution. It can be proved that if a system has feasible solu-
tions, then it has also basic feasible solutions, and these are the
ones we shall, as a rule, try to determine.

If a basic solution contains less than m variables with positive
values, then we call it degenerate.

REFERENCES

The algebraic theory of L.P. is contained in VAiDA [92].* This con-
tains also a more rigorous definition of a * basis.”

* Numbers in brackets refer to the bibliography.
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Transportation Problem (I)

In due course we shall introduce a general routine for the solution
of L.P. problems (see Chapter XIV). However, in special cases we
can sometimes apply simplified routines and we start with an
example where this is the case.

Assume that in a small town a need suddenly arises for a number
of relief buses. In particular, 3, 3, 4, and 5 buses are required at points
A, B, C, and D respectively. These 15 buses must come from the
garages G;, G,, and G; where 2, 6, and 7 buses are ready for such
an emergency. The manager would like to distribute the buses in
such a way that the total of bus-minutes from the garages to their
destinations is as small as possible. The time in minutes taken to
travel from each garage to each destination is given in the following

table—
To A B C D
From G, 13 11 15 20
G, 17 14 12 13
G, 18 18 15 12

If we denote the number of buses to be sent from G, to 4, B, C,
and D respectively by x;,, x;s, X5, and x,,, then the requirements
can be expressed as follows—

(a) The buses at the garages are distributed among the destina-
tions—

Xy + X153 + X153 + X34 =2
X1 + Xga + Xog + X34 =6
X3 + Xgg + Xgg + X3a =7
(b) The buses come to the destinations from various garages—

Xy + X+ X5 =3
X1g + Xgp + X553 =3
X1g + Xog + Xg3 = 4
X14 + Xog + X34 = 5.
The ““ cost ” to be minimized is the total time taken measured in
bus-minutes, i.e.
13%;; 4+ 11x35 + 15%35 + 20x34 + . . . + 12x,.
This is a very simple case of L.P. All the coefficients are unity, and

the pattern of variables occurring in any single equation is a very
3



4 Readings in Linear Programming

special one. Of the 7 equations only 6 are linearly independent,
and thus a basic feasible solution will consist of variables with not
more than 6 positive values.

It is easy to find such a basic feasible solution. Consider the
following table which will be filled in—

Numbers at destinations

' 3 3 4 5
Numbers 2
at 6
sources 7

I

To begin with, take the cell of shortest time, which is that of x,,
with its row and column labelled 2 and 3. Because 2 is the smaller,
enter 2 into this cell, thereby allocating the 2 buses from G,. We
need one more bus at B, and thus we are now concerned with the
reduced scheme

) 31 4 5

6
7

Dealing with this table as we did with the previous one, we enter the
smaller of 4 and 6 into the cell of x,;. Proceeding in the same way,
the entries in the table are eventually—

’ 3 3 4 5
2 2
6 1 1 4 .
7 0 2 . . 5

The totals of rows and columns are, of course, those originally
given. The total time of this scheme is 197 bus-minutes, though
we do not yet know whether this is the best possible scheme, i.e.
that producing the shortest total travelling time.

In order to investigate this point, consider any empty cell, e.g.
that of x;;. If we entered there 1, say, then we must take 1 away
from x,,; to balance again, we must add 1 to x,, and then subtract
1 from x,. Performing these transfers, we change the total cost
by ¢y — €1a + Cag — € = 13 — 11 + 14 — 17 = — 1, i.e. the total
cost would be reduced. Here ¢, is the time taken to travel from G,
to the j* destination. On the other hand, if we wanted a positive
entry for x,,, the cost would be changed by ¢;, — €34 + €51 — €33 +
Cga — C1a = 2, so that this would produce an increase.



Transportation Problem (I) 5

In this way we could examine each empty cell and find out whether
the scheme could be improved. This method was called the * step-
ping-stone method” by Charnes and Cooper [11]. However, it
would be very awkward if we had to make such an investigation for
each empty cell, finding every time a circuit that leads from the
empty cell by horizontal and vertical steps using only filled-in cells,
and that returns to the empty cell considered. A short-cut is pro-
vided by the ““ modified ”” method, which works as follows: on the
margins of the table we enter fictitious costs ¢, for every row and d,
for every column, such that ¢; +d, = ¢, for all occupied cells.
These fictitious costs can be constructed by making c,, say, equal to
0 whereby the others are implicitly fixed. (These fictitious costs
need not be non-negative.) Consider now the first transfer men-
tioned above. A transfer of one bus changes the total cost by
¢yn— € —dy+ g+ dy—cy—dy=cy; — ¢ — d;.  Hence, if the cost
of the unoccupied cell implied by the fictitious cost ¢; + d; is larger
than the true cost ¢y;, then such a rearrangement leads to an improve-
ment. The fictitious costs indicate, in the same way, whether an
improvement is indicated, even if the transfers involve more than
four cells, as in our second example. This is so because each more
complicated transfer can be made up of a succession of simple
ones.

If the implied fictitious cost equals the true cost, then an entry
could be made in that cell, but the resulting reallocation would
leave the total cost unchanged.

For the procedure which we have outlined to work, the number
of occupied cells must equal the number of independent equations
in the transportation problem, i.e. n + m — 1, where n and m are
the numbers of sources and destinations respectively. This can be
achieved, if necessary, by entering appropriate multiples of a small
number into unoccupied cells, and replacing this small number by
zero in the final solution.

In our problem the fictitious costs (f.c.) of rows and columns, and
the implied fictitious costs of the cells unoccupied in our first solu-
tion, are given by the following table—

f.c.
14 . 9 8| 0
.. 11| 3
15 13 4
fc. 14 11 9 8
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Comparison with the true costs shows that it is worth while making
a transfer into x,, (true cost 13, fictitious cost 14) and to effect this
we alternately add to and subtract from x;, X5y, X0, X35 We cannot
transfer more than 1, because otherwise x,, would become negative.
We obtain thus the following new solution, with the new fictitious
costs as indicated—

3 3 4 5 |fc

v W o

2 .
6 . 2 4
7 .

fe. | 13 11 9 7

If we compare the implied fictitious costs in the empty cells with
their true costs, we find that the former are everywhere the smaller,
and hence we have obtained the final, cheapest, solution. The total
travelling time involved is 196 bus-minutes.

We now introduce a measure of efficiency of any given trans-
portation scheme. For this purpose we ask ourselves which would
be the most expensive scheme to satisfy the requirements. We
find—

3 3 4 5|fc

2 0
3 =7

2 .
6 3 . .
7 . 3 4 .| —6

fe. | 29 24 21 20

Here, since we want to find the most expensive total cost, we have
found the final solution when all the implied fictitious costs are higher
than the true costs. This is the case in the present table, and the
highest total cost is 244 bus-minutes.

The efficiency of any scheme between the cheapest and the most
expensive can be defined as the ratio between the actual and the
largest possible reduction from the most expensive scheme. For
instance, our first solution gave 197 bus-minutes. Its efficiency was
therefore (244 — 197)/(244 — 196) = 47/48. The cheapest scheme
has efficiency 1 and the most expensive has, naturally enough,
efficiency zero. (This concept would be inapplicable if any of the
costs were infinite.)

If there is more material at all sources taken together than there
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is required at all the destinations—e.g. when there is a supply of
buses at the garages which exceeds the number of those actually
needed at 4, B, C, and D, then we add another, fictitious, destina-
tion, to which all surplus of material is deemed to be directed, at
zero cost. The buses earmarked for this dummy destination would,
of course, actually not be moved at all from the garages.

REFERENCES

The method of this chapter is based on that of CHARNES and Cooper [11].
Another method, based on that of Forp and FULKERSON [43], will be
explained in Chapter X.

R.L.P. B
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Caterer Problem

THE solution of a transportation problem is so simple that it is
useful to transform other problems into this type, if this is possible.
A case where it can be done will now be studied.

A caterer undertakes to organize garden parties for a week and
decides that he will need a supply of new napkins, each of which costs
2s. He will buy as few as possible and rather send used napkins to a
laundry for cleaning. He finds that a laundry provides a service for
5d. a piece, and returns them within four days. There is also a quicker
z;rvice, at 8d. a piece, and the napkins are then returned within two

ys.

Making his plans for the week, the caterer estimates that he will
need, during the seven days, 130, 70, 60, 100, 80, 90, and 120 napkins
respectively. How many should he buy, and how many should he
send to the laundry, for slow or for quick service, so as to keep his
total expenses as low as possible?

Dealing with this problem algebraically, we denote the price of
a new item by a, that of slow laundering by b, and that of fast
laundering by ¢. The numbers required on the consecutive days
are denoted by r, i =1, . . . ,7). We also denote the numbers of
napkins bought on the i-th day by x,, of those sent to the laundry for
slow service by y;, and of those sent for quick service by z,. Finally,
the numbers of napkins which have been used but not yet sent to
the laundry on the i-¢4 day are denoted by ¢,.

The first requirement which we consider is that the napkins
bought on a particular day, and those coming back from the laundry
after cleaning, must add up to that day’s requirement. Thus

x,=r,((=12)
Xtz g=r,(i=23,4)
X+ 2z g+ yia=r(i=5,6T7).

Further, we note that the number of pieces used on a particular
day equals the number of those sent to the laundry and of those
remaining soiled. Hence

n=n+z+t
rn+ta=y+z,+t,i=2,...,7.
8



Caterer Problem 9

The r, are known, and so we have 14 equations for 28 unknowns.
Only non-negative values of the latter have any realistic meaning.
The first two equations are, of course, already solved.

The objective function to be minimized is that of the total cost,
ie.

C=a + ...+x)+b(y:4+ ... +y)+ecz+...4+2z).

We shall solve this problem by transforming it into one of trans-
portation type, and for this purpose we must define * sources ” and
“ destinations.” We introduce the following sources—

1. A store from which we buy new napkins.

2. The napkins sent to and returned from the laundry.

Our destinations are the requirements on the various days, and
also a store of used napkins and of those bought in excess of require-
ments, if any.

The next task is to determine the marginal totals in the trans-
portation table. The given requirements appear as totals of sources
as well as of destinations. But we must still find the number of
napkins to be bought. It does no harm if we imagine that we buy
too many, provided we imagine that any excess requirement is put
into the final inventory, at zero cost.

It is of interest, in this connection, to determine an upper limit
to the number of those that might have to be bought. It is easy to
see that, if it takes p days to recover the pieces from the slow service,
then the highest number that might conceivably have to be bought
is the largest of the totals of p successive requirements. In our
present example this is 390, and this number would certainly have
to be bought if there were no faster service in existence. It is also
easy to see that the number to be bought is at least the largest of the
totals of ¢ successive daily requirements, if g is the number of days
after which the fast service returns the napkins. This total is here
210.

We turn to the “costs” of the transportation model. If the
source is the store of napkins to be bought, then the cost of any
item from this source is a if the piece is used for one of the daily
requirements, and 0 if it is not used, i.e. if it goes directly into the
final inventory.

If the source is the pile of already used and then laundered nap-
kins, then the cost is b for an item used after 4 or more days, and
c if used after 2 or 3 days. (This assumes that we send the napkins
to the fast service only if the slow service would not do.) If a piece
is not used again, then it goes into the final inventory, and the cost
of this is again zero. We have therefore the following table of

B2



10 Readings in Linear Programming

costs, with the indication of the totals of sources and destinations
on the margins—

130 70 60 100 80 90 120 390

390 a a a a
130 c c
70 c

a a6 o8N

a6 o RN

(SRS S RS <Y
COOCOOCOOO

The first row refers to the napkins that must be bought, and the
last column to the final inventory. The two totals are, of course,
the same.

The cost table is not yet complete. The cells where we have not
entered any cost must not be used at all, since we do not send napkins
to the laundry before we have used them. In order to exclude these
cells from the final solution, we assign to them a very high cost so
that it becomes cheaper to leave these cells out of consideration,
whatever the entries in the other cells.

We now start solving the problem in its transportation form.
Consider, to begin with, the first row. The cheapest entry is in the
last column; but we know already that at least 210 must actually
be bought, and thus not more than 180 can go directly into the final
inventory, represented by the last column. Thus we fill in the first
row—

l 130 70 60 100 80 90 120 390

390 | 130 70 10 180

Now we consider the columns in turn, remembering that there are
cells which must remain empty. In each column we first fill the
cheapest cells, at cost b per unit. Then we consider the cells with
cost ¢c. Here we enter the lowest first, because this means that
we use for the laundries from the fast service as late a source as
possible, thus giving earlier ones a chance of returning their
napkins through the slower, cheaper service. This produces the
arrangement—



390
130
70
60
100
80
90
120

Caterer Problem

130 70 60 100 80 90 120 390
130 70 10 180
50 3050 0

_’ 70 _l 0

30 ' 30 0

9 10 0

80 0

| %

120

11

The lines drawn in the table indicate the limits of the various
cost factors. It is easy to see (e.g. by the stepping-stone method)

that as long as the number of napkins actually bought is fixed at
210, no improvement is possible while ¢ exceeds . Whether an
improvement is possible by buying more napkins can be determined

by subtracting from the top right entry, 180, and entering the
balance in some other cell of the first row. Whether this is useful
depends on the value of (¢ — b)/(a — b). In the present case one
finds that no improvement is possible. However, if the price of the
fast service were, for instance, ¢ = 12 per piece, then the following
scheme would be cheaper—

130 70 60 100 80 90 120 390
390 | 130 70 20 170
130 40 30 |60

70 R _‘

60 20 [40

100 y 90 10
80 —|80

90 90
120 120

We must interpret the entries in terms of the original variables

Xy, ¥4s Z;» and ¢, since these are the ones which tell us what to do.



