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Preface

This book is based on the method of operator identities and the related theory of S-
nodes, both developed by L. A. Sakhnovich. The notion of the transfer matrix function
generated by the S-node plays an essential role.

We represent fundamental solutions of various important systems of differential
equations using the transfer matrix function, that is, either directly in the form of
the transfer matrix function or via the representation in this form of the correspond-
ing Darboux matrix, when Backlund—-Darboux transformations and explicit solutions
are considered. The transfer matrix function representation of the fundamental solu-
tion yields, in turn, a solution of an inverse problem, namely, the problem to recover
the system from its Weyl function. Weyl theories of self-adjoint and skew-self-adjoint
Dirac systems (including the case of rectangular matrix potentials), related canoni-
cal systems, discrete Dirac systems, a system auxiliary to the N-wave equation and a
system rationally depending on the spectral parameter are obtained in this way.

The results mentioned above on Weyl theory are applied to the study of the ini-
tial-boundary value problems for integrable (nonlinear) wave equations via the in-
verse spectral transformation method. The evolution of the Weyl function is derived
for many important nonlinear equations, and some uniqueness and global existence
results are proved in detail using these evolution formulas.

Generalized Backlund—Darboux transformation (GBDT) is one of the main topics
of the book. It is presented in the most general form (i.e. for the case of the linear sys-
tem of differential equations depending rationally on the spectral parameter). Appli-
cations to the Weyl theory and various nonlinear equations are given. Recent results
on explicit solutions of the time-dependent Schrédinger equation of dimension k + 1
are formulated in order to demonstrate the possibility to apply GBDT to linear systems
depending on several variables.

Pseudospectral and Weyl functions of the general-type canonical system are stud-
ied in detail in Appendix A.

The last Chapter 9 of the book contains formulations and solutions of the inverse
and half-inverse sliding problems for radial Schrodinger and Dirac equations, includ-
ing the case of Coulomb-type potentials. Those results appeared first in 2013.

The reading of the book requires some basic knowledge of linear algebra, calculus
and operator theory from standard university courses. All the necessary definitions
and results on the method of operator identities and some other additional material
is presented in Chapter 1. Moreover, several classical theorems, which are important
for the book (e.g. the first Liouville theorem, Phragmen-Lindel6f theorem, Montel’s
theorem on analytic functions) are formulated in Appendix E.
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Chapter 9 was written by L. A. Sakhnovich. Appendix C was written jointly by
A.L.Sakhnovich and L. A. Sakhnovich. Chapters 2 and 3 were written by A. L. Sakhno-
vich and I. Ya. Roitberg. The rest of the book was written by A. L. Sakhnovich.

The book contains results obtained during the last 20 years (or slightly more), and
the idea of writing such a book was first considered many years ago. A. L. Sakhnovich
is grateful to J. C. Bot for the enthusiastic discussions of the project. The authors are
very grateful to F. Gesztesy for his initiation and support of the present (final) version
of the book.
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5-6 years as a result of research supported by the Austrian Science Fund (FWF) under
grants no. Y330 and no. P24301, and by the German Research Foundation (DFG) under
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Notation

A* operator adjointto A

B de Branges space, see (A.11)

B subspace of B, B} = f]L]

» space, see (A.168)

%, space, see (A.168)

B(G,H) set of bounded operators acting from G into H

B(Q) = BY(Q) class of bounded on ) functions (or matrix functions)

BN (Q) class of N times differentiable functions or matrix
functions f on the domain Q such that sup || fV|| < «

C complex plane

Cs open upper half-plane

(- open lower half-plane

C. closed upper (lower) half-planes

Cm open half-plane 3z > M

Cy open half-plane 9z < - M

C(Q) class of continuous on Q functions
(or matrix functions)

cN(Q) class of N times differentiable functions or matrix
functions f on the domain Q such that fN) is
continuous

g1

col column, col [gl gz] = [gz]

diag diagonal matrix

diag {o, o2} diagonal matrix with the entries (or block entries) o,
and o2 on the main diagonal

EG acronym for explicitly generated, a class of potentials

{Ck} determined by the admissible triples, see
Notation 5.38

EG a class of potentials {Ck}, see Notation 5.48

I identity operator

Ip p X p identity matrix

Im A image of the operator A

N imaginary part of either complex number or matrix
Ker A kernel of the operator A

Lo subspace, see (A.10)

L subspace, see (A.9)

L2(H) space, see (A.4)
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Ly (dT)
MmM(D, )
M(p)

M(G,x)
No
N(r,z)or N(r)

Nu(x, z)

N (&)
N (%4)

N(n)

N(S,®y)
NWU)

Py (Jj)

R

Ry

R

Smaxm, ()
span

Span

Tr

o N

ij
g(A)
[D, M]
(*,*)u

-1

Hilbert space with the scalar product

(f,9)r = [Tng2)*dt(2)f(2)

mapping of a GW-function into potential T, see
Definition 4.7

mapping of a GW-function into potential v, see
Definition 3.29

GBDT-type mapping of G into G, see Notation 7.9
set of nonnegative integer numbers

set of values (at z) of Mdbius transformations, see
Notation 5.10

set of values (at z) of Mobius transformations, see
Notation 2.13 for the self-adjoint and Notation 3.1 for
the skew-self-adjoint cases

set of functions (of Mdbius transformations), see (0.8)
set of functions (of Mébius transformations), see
Notation 1.25

set of functions (of M6bius transformations), see
Notation 5.27

set of Herglotz functions, see Notation 1.24

set of functions (of Mdbius transformations), see
Notation 1.46

class of matrix functions with property-j, see
Section 3.1 and Notation 3.1

real axis

operator, see (A.23)

real part of either complex number or matrix

class of Schur matrix functions, see Notation 3.2
linear span

closed linear span

operator (matrix, in particular) trace

operator, see (A.5)

complex conjugate to z

Kronecker delta

spectrum of an operator A

commutator DM — MD

scalar productin H

vector product

12 vector norm or the induced matrix norm
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0 Introduction

In recent years, the interplay between inverse spectral methods and gauge transfor-
mation techniques to solve nonlinear evolution equations has greatly benefited both
areas. The notions of the Weyl and scattering functions, Mobius (linear-fractional)
and Biacklund-Darboux transformations, Darboux matrices and nonlinear integrable
equations are all interrelated. The purpose of this book is to treat this interaction by
actively using various aspects of the method of operator identities (and S-nodes the-
ory, in particular). Thus, Weyl functions that have been initially introduced in the
self-adjoint case also prove very useful for solving non-self-adjoint inverse problems
and Goursat problems for nonlinear integrable equations. The Darboux matrix can be
presented in the form of the transfer matrix function from the system theory, and the
Backlund-Darboux transformation can be fruitfully applied in the multidimensional
case of k > 1 space variables. (We write matrix function and vector function meaning
matrix-valued function and vector-valued function, respectively.) Some simple exam-
ples (as well as several important results) can already be seen in Chapter 1, where
basic definitions and statements to make the book self-contained are also presented.

The famous Schrédinger (Sturm-Liouville) equation is usually considered in the

form
2

- %y(x,z) +v(x)y(x,z) =zy(x,2z). (0.1)

A great number of fundamental notions and results of analysis has been first intro-
duced and obtained for this equation. The list includes the Weyl disc and point, Weyl
solution, spectral and Weyl (or Weyl-Titchmarsh) functions, Backlund—Darboux
transformation, transformation operator and solutions of the inverse problems, and
so on. One also has to mention its connections with the Lax pairs, the method of
the inverse scattering transform, and nonlinear integrable equations. We can refer to
the already classical books [39, 195, 205, 209, 213, 217, 323], though numerous new
important papers, surveys and books appear regularly. Among the more recent devel-
opments are the notions of bispectrality and P7 -symmetry (see [93] and [41], respec-
tively). It is of special interest that practically all of these notions are related in one or
another way.

For each continuous v(x) (0 < x < o) and z # Z, there is a so called Weyl
solution y,, of the Schrédinger equation such that I(;” [V (x,2)|2dx < oo (see, for
instance, p. 60 in [196]). Here, we denote by Z the complex number conjugate to z.
Let y; and y; satisfy the Schrédinger equation and initial conditions

¥1(0) =sin¢, ¥1(0) = —cosc;  ¥2(0) = cosc, y5(0) =sinc (y' . % )
Then, y,, admits representation yy, (x,z) = @(z)y1(x, z) + yv2(x, z). Function ¢ is

called the Weyl or Weyl-Titchmarsh function and is extremely important in spectral
theory. The Weyl-Titchmarsh approach can be developed for a much wider class of
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Schrodinger equations, for matrix Schrodinger equations, and for various other im-
portant systems. For the case of the Hamiltonian systems, some basic results have
been obtained by Hinton and Shaw [141, 142]. Canonical system

0 I
dy(x,z)/dx =izJH(x)y(x,2), J= [ PG ] , Hx)=0 (02
p
with locally summable Hamiltonian H, is a particular case of the Hamiltonian systems
and a classical object of analysis. Here, J and H (x) are m xm matrices, I, isthe p xp
identity matrix, 2p = m, and inequality H (x) > 0 means that

H(x) =H(x)*

(H (x) is self-adjoint) and the spectrum of H (x) is nonnegative. (In general, inequal-
ity S; > S» means that §; = S}, $2 = §F and 1 — S2 = 0.) The summability of a
matrix function means that its entries belong to L! (the entries are summable). The
spectral theory of the general-type canonical systems is studied in Appendix A.

The study of the canonical system includes, in turn, such particular cases as the
Schrédinger matrix equation (0.1), where potential v is a p X p matrix function, and
the well-known self-adjoint Dirac-type (also called Dirac, Zakharov—Shabat or AKNS)
system:

d
ay(x,z) =i(zj+ jV(x))y(x,2z), (0.3)

. Ip 0 _ 0 (Y
J“[o —Ip]' V‘[v* 0]' Rl

Usually, we consider systems (0.1)—(0.3) on the finite intervals [0, L] or semiaxis [0, o).
One can find further references and results on these systems, for instance, in [24,
84, 85, 101, 118, 133, 137, 228, 234, 289, 290], and on the Weyl (Weyl-Titchmarsh or
M-) functions for these systems in [118, 195, 205, 289, 290]. Transformations of the
Dirac and Schrodinger systems into canonical are given in Subsections 1.1.1 and 1.1.2
of Chapter 1. We note that Dirac (Dirac-type) systems differ from the radial Dirac sys-
tems which appeared earlier (and were also called Dirac). Radial Dirac systems are
discussed in detail in Chapter 9 (see also some results from Section 8.2).

We recall that fundamental solutions of the first order differential systems are
square nondegenerate matrix functions, which satisfy these systems (and generate in
an apparent way all other solutions). The fundamental m x m solution of the canon-
ical system (0.2) is normalized by the condition

W(0,z) = In. (0.5)

Parameter matrix functions P (z), P2 (z) of order p, such that

P2 PL2) + Po2)*Pa(2) > 0, [ P2t Pa@)* || 1P {50
P2(z)

(0.6)
play an essential role in our book. Next, follow three basic definitions [281, 289, 290].
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Definition 0.1. A pair of p x p matrix functions P, (z), P2(z), meromorphic in the
upper half-plane C., is called nonsingular with property-] if the first inequality from
(0.6) holds in one point (at least) of C, and the second inequality from (0.6) holds in
all the points of analyticity of P;(z), P2(z) in C,.

Remark 0.2. It is apparent that if the first inequality from (0.6) holds in one point of
C., it holds everywhere, except, possibly, some set of isolated points.

Put

B B -+ | a2 b(2)
Al z) =A(z) =W, 2)* = [ elz) a1 (0.7)
Definition 0.3 ([290, p. 7]). Matrix functions ¢(z), which are obtained via the trans-

formation
©(2) =i(a(2)P1(2) + b(2)P2(2)) (c(2)P1(2) + d(2)P2(2)) ! (0.8)

(where the pairs P (z), P2(z) of “parameter” matrix functions are nonsingular with
property-J, det(cP; + dP2) # 0), are called Weyl functions of the canonical system
on the interval [0, L].

We denote the class of the Weyl functions of the canonical system on [0, [] by
the acronym N (&) or simply by A/ (1). The discs (Weyl discs) N (1) are embedded
in one another, that is, N'(I;) < N (l2) for 1 > L. It is shown in Appendix A that
under a rather weak “positivity” condition on H, we have ;.. NV (1) # (), and matrix
function ¢ € ;. N (1) satisfies inequality

J[ I, ip(z)* ]W(x,z)*H(x)W(x,z)[ ]dx <o (z€C,). (09)
0

14
—ip(z)

In other words, the entries of W(x, z)[ —nl,f(z) ] belong L?(0, o), which is similar to
the definition of the Weyl function of the Schréodinger equation on [0, o). Hence, the

definition below.

Definition 0.4. Holomorphic functions ¢ such that inequality (0.9) holds are called
Weyl functions of system (0.2) on [0, o).

Most of the direct problems in this book consist of the description of the set of Weyl
functions, construction of Weyl functions and the study of their existence and unique-
ness, whereas inverse problems, which we consider here, usually deal with the recovery
of systems from their Weyl functions. Direct and inverse problems are considered ei-
ther for systems determined on the finite interval [0, L] or for systems on the semiaxis
[0, o).

Though all the notions mentioned in the Introduction are important for our book,
the Weyl functions, Bdcklund—Darboux transformations and Darboux matrices are the
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principal ones. Various explicit formulas in the book are obtained through a new ver-
sion of the well known in the spectral theory and integrable nonlinear equations (see,
for instance, [10, 29, 70-72, 83, 84, 140, 192, 199, 206, 209, 213, 215, 231, 335] and ref-
erences therein) Backlund-Darboux transformation (BDT). The BDT transforms the
initial equation or system into another one from the same class and also transforms
solutions of the initial equation into solutions of the transformed one. Let us illus-
trate this by the oldest and most popular example, that is, by the Schrédinger equa-
tion (0.1), where the scalar potential v is real valued (i.e. v = 7) and z = Z. Assyme
that h(x) = h(x) satisfies (0.1), when z = ¢, thatis, —h"’ +vh = ch (W’ := %*_rh).
Then, one can rewrite (0.1) in the form

(A*A+cl) y(x,2) = zy(x, 2), (0.10)

where I is the identity operator, and .4 and .A* are first order differential expressions:

_(4_K sp__ (4 K
'Af_(dx h)f' AN = (dx+ h)f'
The transformed equation is given by the formula
(AA* +cl) y(x,z) = zy(x,z). (0.11)

It easy to see that (0.11) is again the Schrodinger equation, but potential v is trans-
formed into v = v — 2("‘7)’. Notice further that

(AA* + (c —2)) A= A(A* A+ (c - 2)I).

Hence, it follows that if v (x, z) satisfies (0.10), then ¥ := Ay satisfies (0.11). All so-
lutions of the transformed equations can be constructed in this way. Under rather
weak conditions, the spectra of operators A*A and AA* may differ only at zero,
and so under certain conditions, the spectra of Schrédinger operators L and L as-
sociated with differential expressions —%2— + v and —%j—;y + ¥ may only differ at
c. The Backlund-Darboux-type (and related commutation) methods of inserting and
removing eigenvalues of Schrédinger operators go back historically to Jacobi, Back-
lund and Darboux [29, 84, 146] with decisive later contributions by Crum, Deift and
Gesztesy [82, 87, 88, 117, 123]. (See a detailed account in Appendix G in [118].)

One can apply the BDT again to the already transformed equation (0.11) and so
on (iterated BDT). There is also a somewhat more complicated binary BDT ([2, 209]).
It proves that if v satisfies a nonlinear integrable equation, then v often satisfies it too,
and so the BDT is used to construct solutions of the nonlinear equations.

Elementary Backlund-Darboux transformations for Dirac-type and more gener-
al AKNS systems one can find, for instance, in [66, 172]. Given first order initial and
transformed systems u’ = G(x,z)u and i’ = G(x,z)ii, their solutions are con-
nected via the so called Darboux matrix w such that w’ = Gw — wG. Clearly,
if u satisfies the initial system ' = Gu, then wu satisfies the transformed one



