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Preface

Given that there is a multitude of well-written and useful textbooks and monographs
on partial differential equations, one of the obvious concerns of prospective authors
might be why there should be another one written. So, it is appropriate to explain at
the outset some of the particular features which make this book different from other
texts. It will be obvious to the reader that the present book is not a run-off-the-mill
text book on linear partial differential equations. First of all, the whole approach —
although (with some additional work) extendable to a more general Banach space set-
ting — is established in a Hilbert space setting, as the title of this monograph indicates.
Of course, a Banach space setting is more general and sometimes more appropri-
ate, but usually the core results rely nevertheless on a Hilbert space solution theory,
a fact sometimes only tacitly acknowledged. We hope to show that, for presenting
core ideas, our focus on a Hilbert space setting is not a constraint, but rather a highly
suitable approach for providing a more transparent and even fairly elementary frame-
work for presenting the main issues in the discussion of a solution theory for partial
differential equations.

The reader may also find many topics, dealt with elsewhere, presented here in a
slightly different flavor. Indeed, the building blocks (such as extrapolation and inter-
polation spaces, sums of operators, vector-valued Laplace transform) are largely well
known with some of the ideas dating back to the early 1960s, see e.g. [35], [26] for the
idea of interpolation/extrapolation spaces. Therefore, it has been and still is surprising
to us that the full power of these concepts, which we utilize in this approach, has not
been previously exploited to the extent we have found so useful. The differences are
somewhat subtle and a more superficial reader may fail to appreciate how different our
perspective on the theory of linear partial differential equations is. Indeed, it is this
perspective on our approach which may be considered the most innovative feature of
this monograph. In contrast to many other books, which are either focusing on specific
types of partial differential equations or on a collection of tools for solving a variety
of problems associated with various specific linear partial differential equations, we
are attempting to assume a more global point of view on the issues involved.

Our approach can be classified as a functional analytical one, but this says very lit-
tle, since nowadays it is the accepted standard to employ functional analytic language
to formulate PDE problems. It may, however, come as a surprise that a Hilbert space
setting is sufficiently general to cover the core issues of solving PDE problems. We
focus on the case of linear partial differential equations, which is of course in one
way a severe constraint, but given that by a rule of thumb non-linear problems, if they
are at all well-posed, are frequently solvable by using a priori estimates and a fixed
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point argument based on perturbations of the linear theory, we see the restriction to
linear partial differential equations more as foundation laying rather than an exclusion
of non-linear issues.

A natural guideline for approaching problem solving is provided by Hadamard’s
celebrated criteria for well-posedness:'

» Uniqueness: there is at most one solution,
» Existence: there is at least one solution (at least for a dense set of data),

» Continuous Dependence: the dependence of the solution on the data is locally
(or weakly locally) uniformly continuous.

Compared to these fundamental requirements, qualitative properties of a solution are
a secondary consideration. This remark applies in particular to the issue of regularity
in connection with solving linear partial differential equations.

The historical focus on regularity issues has fostered a number of guiding ideas,
which in the light of our approach appear as occasionally misleading. Among these
are the notions that

» partial differential equations are best classified according to the regularizing
properties of their solution operators,

» one type of space should be used for solving “all” problems associated with
partial differential equations,

» problems involving elliptic partial differential equations are “easier” than those
involving parabolic partial differential equations, which are again “easier” than
those involving hyperbolic partial differential equations.

The systematic approach presented here will shed a different and hopefully more illu-
minating light on these and other issues by

» proposing a different classification scheme,

» advocating the construction of “tailor-made” distribution spaces adapted to the
particular equation at hand,

! These requirements are straightforwardly illustrated, if we consider the “problem™ of finding a
solution of the equation F(x) = f, where F denotes a mapping between — say — metric spaces. The
properties are that F must be injective, with dense range and with F~! being (at least weakly) locally
uniformly continuous. We note in particular that the (weakly) local uniform continuity of F~! allows
the extension of F to its closure F given by F(x) := lim F(y) for any sequence y converging to x such
that F(y) also converges. Indeed, for two sequences y& k=01, converging to x such that F (_\'(k)).
k = 0, 1, are also convergent, we have that F(y(o) ), F(_v“)) must converge to the same limit, so that F
is well-defined, i.e. F is closable. Weakly local uniform continuity is indeed characterized by mapping
Cauchy sequences to Cauchy sequences.
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» showing that from our point of view parabolic and hyperbolic partial differential
equations are, in a way, “‘easier” than elliptic partial differential equations.

It will also be seen that our general framework is sufficiently powerful to be applied
to general evolution equations. However, to flesh out the ideas presented, we shall
illustrate by examples and consider particular systems of partial differential equations
from mathematical physics.

Accordingly, the book is divided into several natural parts. In Chapter 1 we supply
some additional material on functional analysis® in Hilbert space which may be dif-
ficult to find elsewhere. Chapter 2 introduces the idea of what we shall call Sobolev
lattices. In Chapter 3, as a first application, we consider partial differential equations
with constant coefficients in R?*!, n € N. The results are extended to tempered
distributions (set in a suitably extended Sobolev lattice). Then in Chapter 4 the ideas
presented are transferred to a more general framework covering a large class of ab-
stract evolution equations. In Chapter 5 this general setting is exemplified by applica-
tions to a variety of initial-boundary value problems from mathematical physics. The
concluding Chapter 6 offers a new approach to initial boundary value problems by
expanding on the ideas and concepts presented.

The material is based on lecture notes developed for introductory and advanced
graduate level courses on partial differential equations and functional analysis given
by the first author over the past three decades at the Rheinische Friedrich-Wilhelms-
Universitit at Bonn, Germany, at the University of Wisconsin-Milwaukee, Wisconsin,
USA, and at the Technische Universitidt Dresden, Germany, and on a series of lectures
given at the Strathclyde University, Glasgow, Scotland, UK. This development from
lecture notes has led to proofs being given in more detail than one might normally
expect in a monograph. This may slow the readers progress, but it should, however,
make the text not only useful as a resource for courses on the topic but also make it
suitable as a text for a reading course or for self-study.

Apart from the novel approach the material presented in this monograph may in
many ways be considered elementary, however, researchers will nevertheless find new
results for particular evolutionary system from mathematical physics in later parts of
this monograph as well as a very different perspective on seemingly familiar evolu-
tionary problems.

This book has been in preparation for a number of years and many colleagues have
contributed to the effort either directly through discussion and comment on research
papers or at seminar or indirectly through general support and encouragement. The
first of us (RP) would like to particularly acknowledge the hospitality of the Depart-
ment and Mathematics and Statistics, University of Strathclyde, that he has enjoyed
first as a young Visiting Researcher and more recently as a Visiting Professor, while
DM would mention all colleagues, past and present, in the Department and Mathemat-
ics and Statistics, University of Strathclyde, but particularly Adam McBride, Wilson

2 We have chosen to assume that the reader is familiar with basic functional analysis in Hilbert space.
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Lamb and Mike Grinfeld of the Applied Analysis Group. Both of us would like to
thank Rolf Leis and Gary Roach for encouragement and support throughout our ca-
reers.

Finally, we both wish to acknowledge the love and support of our wives, Brigitte
and Alison, and families — their patience and understanding (of the effort required if
not the mathematics itself!) has been necessary, and we hope sufficient, to see this
task to a successful conclusion.

Dresden / Glasgow, January 2011 Rainer Picard, Des McGhee
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1 <> <>

2

o

cof(A)
cof(A) T

*

L(H,H)
Coo(Q)

) @

& Yy e

mapping, asin A — B

. n—oQ
strong convergence, as in x, ——> X for the convergence of a se-
quence (x,)neN to its limit xo in the norm topology

. n—00
weak convergence, as in x, —— X for the weak convergence of a

sequence (X, )neN to its weak limit xo, i.€. in the weak topology
logical “and”

logical (non-exclusive) “or”

forall .../ forevery...

there is . .. / there exists . ..

maps to, as in x > %2

closure of A
adjoint relation or mapping to a relation or mapping A

o
closure of a closable operator A restricted to elements in Co (€2) for some
open subset @ € R"t1 n e N

co-factor matrix associated with a square matrix A

transposed co-factor matrix associated with a square matrix A, adjunct
matrix

complex conjugate of a complex number z

continuous linear mappings on H

space of smooth functions with compact support contained in the open
subset @ C R"t! ne N

derivatives (g, 91, ..., ) inRY" neN

spatial derivatives (d1, d2,...,0,) in R!'*” with 9y denoting the time
derivative, n € N

time derivative in R!7”? n e N
same as grad

same as curl

same as div

direct sum, orthogonal sum



Xvi Nomenclature

ey direct summation sign or orthogonal summation sign as in @, H:

Div divergence of (1, 1)-tensor fields

€ element signasinx € C

€ element function as in x =€ ({x}) giving the element of a set containing
only one element

£y Fourier—Laplace transform with parameter v € R *!

L, temporal Fourier-Laplace transform with parameter v € R

?(- —iv) sameas £, f

Grad symmetric part of the covariant derivative of a vector field

H, x short for Hi(d, + v), k € Z

Hy0.0 short for H, o ® H

HL Hardy-Lebesgue space

i imaginary unit

(-]-)x inner product of the inner product space X

E~'2[X] inner product space derived from the inner product space X by modifying
the inner product (-|-) x to (:| E-) x, where E : X — X is continuous,
linear, symmetric and strictly positive definite

[7] smallest integer greater than or equal to the real number r (roof)

Lr] largest integer less than or equal to the real number r (integer part, floor)

N big intersection symbol, as in (\ M = {y| Ayepr ¥ € X} or (\yepu X

A spatial Laplacian, same as 92 or —|5|2

|512 negative spatial Laplacian, same as —A or —92

92 spatial Laplacian, same as A or —|5|2

dsy line element at a point x

ds line element

Lin linear hull, as in Ling A, the smallest linear space over the field K con-
taining the set 4

—A the relation {(a, —b)| (a,b) € A} with A C X x Y

—[4] the set of all negatives of elements in the set A

[fo} 1 null space or kernel of a mapping or function f

N(f) null space or kernel of a mapping or function f

C field or set of complex numbers

Re real part
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Jm
K
N
R
Z
e
[lAll

4llx—y

1
MJ_
A[M]
A[M]
A[X]

Ry
a(A)
Co(A)

imaginary part

field or set of numbers (either K = R or K = C)

monoid or set of natural numbers {0, 1,2,...}

field or set of real numbers

group or set of integers

vector (1,1,....1)

operator norm of a linear operator A between normed linear spaces

operator norm of a linear operator A : X — Y, X,Y normed linear
spaces

orthogonal, asinx L y

ortho-complement of M,

the post-set or image of M with respect to a mapping or function A
the post-set or co-domain of M with respect to the binary relation A

the post-set of X of a relation A € X x Y, co-domain, range or image of
the mapping or function A

range of the mapping or function A

the power set of B

the set of (left-total) mappings from B into A

the pre-image of M with respect to a mapping or function A
the pre-set of M with respect to a binary relation 4

the pre-set of a relation A, the pre-image of Y with respect to a mapping
or function A or the domain of A

the domain of a mapping or function A

Cartesian product as in X x Y or Cartesian multiplication sign as in
Xsem Hx, where X, Y, M, Hg are sets, t € M

vector product in R3 as in x x y, where x, y € R3
orthogonal projector onto the closed subspace C
resolvent set of operator A

Sobolev lattice resolvent set of A

A restricted to M for a mapping A : D(A) € X — Y, i.e. the mapping
Alp : D(A)NM C X — Y where x = A(x)

Riesz mapping, which unitarily maps H* onto H
spectrum of operator A

continuous spectrum of A
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Nomenclature

Po(A)
Ro(A)
Po_s(A)
Ro_(A)
O—o0o(A)
Co_x(A)
supp
SUppy,

Suppo
de

point spectrum of A

residual spectrum of A

Sobolev lattice point spectrum of A

Sobolev lattice residual spectrum of A

Sobolev lattice spectrum of A

Soboleyv lattice continuous spectrum of A

support

support in direction vg

temporal support

surface element at x

surface element

algebraic tensor product

tensor product

big union symbol, asin [ JM = {y|\/yep ¥ € X} or Uyep X
vector analytic differential operator grad, gradient
vector analytic differential operator curl, curl
vector analytic differential operator div, divergence
volume element at x

volume element
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