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PREFACE

See also http://www.wiley.com/college/mat/kreyszig154962/
Purpose of the Book

This book introduces students of engineering, physics, mathematics, and computer science
to those areas of mathematics which, from a modern point of view, are most important in
connection with practical problems.

The content and character of mathematics needed in applications are changing rapidly.
Linear algebra—especially matrices—and numerical methods for computers are of
increasing importance. Statistics and graph theory play more prominent roles. Real analysis
(ordinary and partial differential equations) and complex analysis remain indispensable.
The material in this book is arranged accordingly, in seven independent parts (see also
the diagram on the next page):

Ordinary Differential Equations (Chaps. 1—5)

Linear Algebra, Vector Calculus (Chaps. 6—9)

Fourier Analysis and Partial Differential Equations (Chaps. 10, 11)
Complex Analysis (Chaps. 12—16)

Numerical Methods (Chaps. 17—19)

Optimization, Graphs (Chaps. 20, 21)

Probability and Statistics (Chaps. 22, 23)

This is followed by

QEEDOR»>

References (Appendix 1)

Answers to Odd-Numbered Problems (Appendix 2)
Auxiliary Material (Appendix 3 and inside of covers)
Additional Proofs (Appendix 4)

Tables of Functions (Appendix 5).

This book has helped to pave the way for the present development and will prepare
students for the present situation and the future by a modern approach to the areas listed
above and the ideas—some of them computer related—that are presently causing basic
changes: Many methods have become obsolete. New ideas are emphasized, for instance,
stability, error estimation, and structural problems of algorithms, to mention just a few.
Trends are driven by supply and demand: supply of powerful new mathematical and
computational methods and of enormous computer capacities, demand to solve problems
of growing complexity and size, arising from more and more sophisticated systems or
production processes, from extreme physical conditions (for example, those in space
travel), from materials with unusual properties (plastics, alloys, superconductors, etc.), or
from entirely new tasks in computer vision, robotics, and other new fields.

The general trend seems clear. Details are more difficult to predict. Accordingly,
students need solid knowledge of basic principles, methods, and results, and a clear
perception of what engineering mathematics is all about, in all three phases of solving
problems:

* Modeling: Translating given physical or other information and data into
mathematical form, into a mathematical model (a differential equation, a system of
equations, or some other expression).
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e Solving: Obtaining the solution by selecting and applying suitable mathematical
methods, and in most cases doing numerical work on a computer. This is the main
task of this book.

 Interpreting: Understanding the meaning and the implications of the mathematical
solution for the original problem in terms of physics—or wherever the problem comes
from.

It would make no sense to overload students with all kinds of little things that might be
of occasional use. Instead, it is important that students become familiar with ways to think
mathematically, recognize the need for applying mathematical methods to engineering
problems, realize that mathematics is a systematic science built on relatively few basic
concepts and involving powerful unifying principles, and get a firm grasp for the
interrelation between theory, computing, and experiment.

The rapid ongoing developments just sketched have led to many changes and new
features in the present edition of this book.

In particular, many sections have been rewritten in a more detailed and leisurely
fashion to make it a simpler book.

This has also led to a still better balance between applications, algorithmic ideas,
worked-out examples, and theory.

Big Changes in This Edition

PROBLEM SETS CHANGED

The new problems place more emphasis on qualitative methods and applications. There
is a (slight) reduction of formal manipulations in favor of problems that require
mathematical thinking and understanding, as opposed to a routine use of a CAS (Computer
Algebraic System).

PROJECTS

Modern engineering work is team work, and TEAM PROJECTS will help the student to
prepare for this. (These are relatively simple, so that they will fit into the time schedule
of a busy student.) WRITING PROJECTS will help in learning how to plan, develop, and
write coherent reports. CAS PROJECTS and CAS PROBLEMS will invite the student to
an increased use of computers (and programmable calculators); these projects are not
mandatory, simply because this book can be used independently of computers or in
connection with them (see page x).

NUMERICAL ANALYSIS UPDATED

Details are given below.

Further Changes and New Features in Chapters
Ordinary Differential Equations (Chaps. 1-5)

P First-Order Differential Equations (Chap. 1). Qualitative aspects emphasized by
discussing direction fields early (Sec. 1.2). Presentation streamlined by combining
exact equations and integrating factors into one section (Sec. 1.5) and moving Picard’s
iteration to Sec. 1.9 on existence and uniqueness.
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p Linear Second and Higher Order Differential Equations combined into one chapter
(Chap. 2), to save some time by avoiding duplications.

p Systems of Differential Equations (Chap. 3). Lotka—Volterra predator—prey
population model included.

p Frobenius Method (Chap. 4). Material on Bessel functions slightly reduced.

p Laplace Transforms (Chap. 5). New section on systems of differential equations
included.

Linear Algebra, Vector Calculus (Chaps. 6—9)

P Matrices, Linear Systems (Chap. 6). Slightly more rapid start by combining the first
two sections from the last edition. Applications appearing earlier. Cramer’s rule
absorbed into the (slightly condensed) section on determinants (Sec. 6.6). Inverse
treated more compactly (Sec. 6.7).

p Eigenvalue Problems placed in a separate chapter (Chap. 7), to have the basic material
on vectors and matrices in a chapter of its own.

Fourier Analysis and Partial Differential Equations (Chaps. 10, 11)

p Fourier Series (Chap. 10) streamlined by moving half-range expansions into the
section on even and odd functions (Sec. 10.4).

p> Partial Differential Equations (Chap. 11). Fourier transform method absorbed into
the section on Fourier integrals for heat problems (Sec. 11.6).

Complex Analysis (Chaps. 12—16)

p Complex Numbers and Functions (Chap. 12). The old chapter on conformal mapping
no longer exists. Its (slightly reduced) material has been distributed in Sec. 12.5 on
conformality, Secs. 12.6-12.8 on special functions, and Sec. 12.9 on linear fractional
transformations. Hence for a better understanding we now discuss geometric properties
of functions simultaneously with their analytic formulas, as we do all the time in
calculus.

p Complex Integration (Chap. 13). Integration methods right after the definition of the
integral.

p Laurent Series, formerly in a chapter jointly with power series, combined with residue
integration in Chap. 15.

Numerical Methods (Chaps. 17—19)

p Numerical Methods in General (Chap. 17). Updated in the light of computer
requirements and developments. Idea of error estimation by halving. Changes in Sec.
17.4 on splines, in Sec. 17.5 on error estimates in integration. Adaptive integration
and Romberg integration included (Sec. 17.5).

p Methods for Differential Equations (Chap. 19). Automatic variable step size
selection in modern codes, Runge—Kutta—Fehlberg method (Sec. 19.1), extension of
Euler and Runge—Kutta methods to systems and higher order equations (Sec. 19.3)
included.

Optimization, Graphs (Chaps. 20, 21)

P Linear Programming (Chap. 20). Simplex method completely rewritten in terms of
matrix language and techniques.
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Probability and Statistics (Chaps. 22, 23)

P Probability (Chap. 22) beginning with a section on data analysis, explaining stem-
and-leaf plots and boxplots and motivating probability by relative frequency (Sec.
22.1).

P Statistics (Chap. 23) beginning with a section on the use of random number generators
(Sec. 23.1). Introduction to correlation added (Sec. 23.10).

Appendices
P Appendix 1 (References) updated.

Suggestions for Courses: A Four-Semester Sequence

The material may be taken in sequence and is suitable for four consecutive semester
courses, meeting 3—5 hours a week:

First semester. Ordinary differential equations (Chaps. 1-4 or 5)
Second semester. Linear algebra and vector analysis (Chaps. 6—9)
Third semester. Complex analysis (Chaps. 12—16)

Fourth semester. Numerical methods (Chaps. 17-19)

For the remaining chapters, see below. Possible interchanges are obvious; for instance,
numerical methods could precede complex analysis, etc.

Suggestions for Courses: Independent One-Semester Courses

The book is also suitable for various independent one-semester courses meeting 3 hours
a week; for example:

Introduction to ordinary differential equations (Chaps. 1—2)
Laplace transform (Chap. 5)

Vector algebra and calculus (Chaps. 8, 9)

Matrices and linear systems of equations (Chaps. 6, 7)
Fourier series and partial differential equations (Chaps. 10, 11, Secs. 19.4-19.7)
Introduction to complex analysis (Chaps. 12—15)
Numerical analysis (Chaps. 17, 19)

Numerical linear algebra (Chap. 18)

Optimization (Chaps. 20, 21)

Graphs and combinatorial optimization (Chap. 21)
Probability and statistics (Chaps. 22, 23)

General Features of This Edition

The selection, arrangement, and presentation of the material has been made with greatest
care, based on past and present teaching, research, and consulting experience. Some major
features of the book are these:

The book is self-contained, except for a few clearly marked places where a proof
would be beyond the level of a book of the present type and a reference is given instead.
Hiding difficulties or oversimplifying would be of no real help to students.

The presentation is detailed, to avoid irritating readers by frequent references to details
in other books.

The examples are simple, to make the book teachable—why choose complicated
examples when simple ones are as instructive or even better?
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PART A
Ordinary

Differential
Equations

Chapter 1 First-Order Differential Equations

Chapter 2  Linear Differential Equations
of Second and Higher Order

Chapter 3  Systems of Differential Equations.
Phase Plane, Qualitative Methods

Chapter 4  Series Solutions of Differential Equations.
Special Functions

Chapter 5  Laplace Transforms

Differential equations are of fundamental importance in engineering mathematics
because many physical laws and relations appear mathematically in the form of such
equations. In Part A, which consists of five chapters, we shall consider various physical
and geometrical problems that lead to differential equations, and we shall explain the most
important standard methods for solving such equations.

Modeling. We shall pay particular attention to the derivation of differential equations
from given physical (or other) situations. This transition from the given physical problem
to a corresponding “mathematical model” is called modeling. This is of great practical
importance to the engineer, physicist, and computer scientist, and we shall illustrate it
using typical examples.

Computers. Differential equations are very well suited for computers. Corresponding
NUMERICAL METHODS for solving differential equations are explained in Secs.
19.1-19.3. These sections are independent of other sections on numerical methods, so that
they can be studied directly after Chaps. 1 and 2, respectively.

Evaluating Results. We must make sure that we understand what a mathematical result
means in physical or other terms in a given problem. If we obtained the result using a
computer, we must check the result for reliability—the computer can sometimes give us
nonsense. This applies to all the work with computers.



CHAPTER 1

First-Order Differential
Equations

In this chapter we begin our program of studying ordinary differential equations and
their applications. This includes the derivation of differential equations from physical
or other problems (modeling), the solution of these equations by methods of practical
importance, and the interpretation of the results and their graphs in terms of a given
problem. We also discuss the questions of existence and uniqueness of solutions.

We start with the simplest equations. These are called differential equations of the
first order because they involve only the first derivative of the unknown function. Our
usual notation for the unknown function will be y(x) or y(7).

Numerical methods for these equations follow in Secs. 19.1 and 19.2, which are
totally independent of other sections in Chaps. 17-19, and can be taken up immediately
after this chapter.

Prerequisite for this chapter: integral calculus.

Sections that may be omitted in a shorter course: 1.7-1.9.
References: Appendix 1, Part A.

Answers to Problems: Appendix 2.

1.1

Basic Concepts and Ideas

An ordinary differential equation is an equation that contains one or several derivatives
of an unknown function, which we call y(x) and which we want to determine from the
equation. The equation may also contain y itself as well as given functions and constants.
For example,

(1) y' = cosx,
2) y' + 4y =0,
3) x2y"y" + 2e%y" = (x® + 2)y?

are ordinary differential equations. The word “ordinary” distinguishes them from partial
differential equations, involving an unknown function of two or more variables and its
partial derivatives; these equations are more complicated and will be considered later (in
Chap. 11).

Differential equations arise in many engineering and other applications as mathematical
models of various physical and other systems. The simplest of them can be solved by
remembering elementary calculus.



