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Preface

The authors’ major objective in preparing this new edition was to update the text to
conform to both the 1999 Load and Resistance Factor (LRFD) Design Specification
and the 2002 edition of the LRFD Manual of Steel Construction.

Among the several changes made in the new specification and included in the
steel manual are the following:

1. The inclusion of data and equations in both U.S. customary units and metric
units.

. The introduction of two new important ASTM steels, A913 and A992.

. A few revisions in bolt criteria.

[SSIS]

N

. Revised design procedure for fatigue loadings.
5. A new section concerning the evaluation of existing structures.

In addition to the revisions in the Specification, several changes and additions have been
made in the text concerning the enclosed computer programs. First, the program previ-
ously named INSTEP has been updated to the new specifications and has been changed
from a DOS format to a Windows format. It is now named INSTEP32. Though the pro-
gram was written specifically to solve many of the textbook-type problems presented in
this book, it has often been used by professional engineers in their design practices.

Despite the practical applications of INSTEP32 and its value in teaching steel
design, the authors feel that many professors would like their students to have some
experience with at least one of the major commercial steel-design programs on the
market today, in hopes that such experience would enable students to cross the bridge
more quickly between the classroom and actual design practice. As a result, a student
version of SAP 2000 has been included with INSTEP32 on the enclosed disk and pre-
sented herein. Use of this software will also enable the student to better understand
the relationship between analysis and design.

Chapter 20, a new chapter in the text, presents an introduction to the subject of
systems design. In this regard, recent requirements for “capstone” courses in our engi-
neering schools have made the subject of “open-ended” problems a serious component
of design studies. Therefore, the topic of systems design along with “open-ended” prob-
lems and an introduction to SAP 2000 are included in Chapter 20.

The authors wish to thank the following persons who reviewed this edition:
Robert Abendroth, Daniel G. Linzell, Rolla Idriss, W. H. Walker, and Ahmad M. Itani.

They also thank the reviewers and users of the previous editions of this book for
their suggestions, corrections, and criticisms. They are always grateful to anyone who
takes the time to contact them concerning any part of their book.

Jack C. McCormac
James K. Nelson
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1.1.1

1.1.2

CHAPTER 1

Introduction to Structural
Steel Design

ADVANTAGES OF STEEL AS A STRUCTURAL MATERIAL

A person traveling in the United States might quite understandably decide that
steel was the perfect structural material. He or she would see an endless number of
steel bridges, buildings, towers, and other structures. After seeing these numerous steel
structures, this traveler might be surprised to learn that steel was not economically
made in the United States until late in the nineteenth century, and the first wide-flange
beams were not rolled until 1908.

The assumption of the perfection of this metal, perhaps the most versatile of
structural materials, would appear to be even more reasonable when its great strength,
light weight, ease of fabrication, and many other desirable properties are considered.
These and other advantages of structural steel are discussed in detail in the paragraphs
that follow.

High Strength

The high strength of steel per unit of weight means that the weight of structures will be
small. This fact is of great importance for long-span bridges, tall buildings, and struc-
tures situated on poor foundations.

Uniformity

The properties of steel do not change appreciably with time, as do those of a rein-
forced-concrete structure.

Elasticity

Steel behaves closer to design assumptions than most materials because it follows
Hooke’s law up to fairly high stresses. The moments of inertia of a steel structure can
be accurately calculated, while the values obtained for a reinforced-concrete structure
are rather indefinite.



114

1.1.5

1.1.6

Chapter 1 Introduction to Structural Steel Design

Erection of steel joists. (Courtesy of Vulcraft.)

Permanence

Steel frames that are properly maintained will last indefinitely. Research on some of
the newer steels indicates that under certain conditions no painting maintenance what-
soever will be required.

Ductility

The property of a material by which it can withstand extensive deformation without
failure under high tensile stresses is said to be its ductility. When a mild or low-carbon
structural steel member is being tested in tension, a considerable reduction in cross
section and a large amount of elongation will occur at the point of failure before the
actual fracture occurs. A material that does not have this property is generally unac-
ceptable and is probably hard and brittle, and it might break if subjected to a sudden
shock.

In structural members under normal loads, high stress concentrations develop at
various points. The ductile nature of the usual structural steels enables them to yield lo-
cally at those points, thus preventing premature failures. A further advantage of ductile
structures is that when overloaded their large deflections give visible evidence of im-
pending failure (sometimes jokingly referred to as “running time”).

Toughness

Structural steels are tough—that is, they have both strength and ductility. A steel mem-
ber loaded until it has large deformations will still be able to withstand large forces.
This is a very important characteristic because it means that steel members can be
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1.2 Disadvantages of Steel as a Structural Material 3

subjected to large deformations during fabrication and erection without fracture—thus
allowing them to be bent, hammered, sheared, and have holes punched in them with-
out visible damage. The ability of a material to absorb energy in large amounts is called
toughness.

Additions to Existing Structures

Steel structures are quite well suited to having additions made to them. New bays or
even entire new wings can be added to existing steel frame buildings, and steel bridges
may often be widened.

Miscellaneous

Several other important advantages of structural steel are as follows: (a) ability to be
fastened together by several simple connection devices including welds and bolts, (b)
adaptation to prefabrication, (c) speed of erection, (d) ability to be rolled into a wide
variety of sizes and shapes as described in Section 14, (e) fatigue strength, (f) possible
reuse after a structure is disassembled, and (g) scrap value, even though not reusable in
its existing form. Steel is the ultimate recyclable material.

DISADVANTAGES OF STEEL AS A STRUCTURAL MATERIAL

In general, steel has the following disadvantages:

Maintenance Costs

Most steels are susceptible to corrosion when freely exposed to air and water and
therefore must be painted periodically. The use of weathering steels, however, in suit-
able applications tends to eliminate this cost.

Fireproofing Costs

Although structural members are incombustible, their strength is tremendously re-
duced at temperatures commonly reached in fires when the other materials in a build-
ing burn. Many disastrous fires have occurred in empty buildings where the only fuel
for the fires was the buildings themselves. Furthermore, steel is an excellent heat con-
ductor—nonfireproofed steel members may transmit enough heat from a burning sec-
tion or compartment of a building to ignite materials with which they are in contact in
adjoining sections of the building. As a result, the steel frame of a building may have to
be protected by materials with certain insulating characteristics, and the building may
have to include a sprinkler system if it is to meet the building code requirements of the
locality in question.

Susceptibility to Buckling

As the length and slenderness of a compression member is increased, its danger of
buckling increases. For most structures the use of steel columns is very economical be-
cause of their high strength-to-weight ratios. Occasionally, however, some additional
steel is needed to stiffen them so they will not buckle. This tends to reduce their economy.
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Fatigue

Another undesirable property of steel is that its strength may be reduced if it is subjected
to a large number of stress reversals or even to a large number of variations of tensile
stress. (Fatigue problems occur only when tension is involved.) The present practice is
to reduce the estimated strengths of such members if it is anticipated that they will
have more than a prescribed number of cycles of stress variation.

Brittle Fracture

Under certain conditions steel may lose its ductility, and brittle fracture may occur at
places of stress concentration. Fatigue type loadings and very low temperatures aggra-
vate the situation.

EARLY USES OF IRON AND STEEL

Although the first metal used by human beings was probably some type of copper
alloy such as bronze (made with copper, tin, and perhaps some other additives), the
most important metal developments throughout history have occurred in the manufac-
ture and use of iron and its famous alloy called steel. Today, iron and steel make up
nearly 95 percent of all the tonnage of metal produced in the world.'

Despite diligent efforts for many decades, archaeologists have been unable to
discover when iron was first used. They did find an iron dagger and an iron bracelet in
the Great Pyramid in Egypt, which they claim had been there undisturbed for at least
5,000 years. The use of iron has had a great influence on the course of civilization since
the earliest times, and may very well continue to do so in the centuries ahead. Since the
beginning of the Iron Age in about 1000 B.c., the progress of civilization in peace and
war has been heavily dependent on what people have been able to make with iron. On
many occasions its use has decidedly affected the outcome of military engagements.
For instance, in 490 B.C. in Greece at the Battle of Marathon, the greatly outnumbered
Athenians killed 6400 Persians and lost only 192 of their own men. Each of the victors
wore 57 pounds of iron armor in the battle. (This was the battle from which the runner
Pheidippides ran the approximately 25 miles to Athens and died while shouting news
of the victory.) This victory supposedly saved Greek civilization for many years.

According to the classic theory concerning the first production of iron in the
world, there was once a great forest fire on Mount Ida in Ancient Troy (now Turkey)
near the Aegean Sea. The land surface supposedly had a rich content of iron and the
heat of the fire is said to have produced a rather crude form of iron which could be
hammered into various shapes. Many historians believe, however, that human beings
first learned to use iron that fell to the earth in the form of meterorites. Frequently the
iron in meteorites is combined with nickel to produce a harder metal. Perhaps early
human beings were able to hammer and chip this material into crude tools and
weapons.

Steel is defined as a combination of iron and a small amount of carbon, usually
less than 1 percent. It also contains small percentages of some other elements. Although

' American Iron and Steel Institute, The Making of Steel (Washington, D.C.. not dated), p. 6.
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some steel has been made for at least 2000-3000 years, there was really no economical
production method available until the middle of the nineteenth century.

The first steel almost certainly was obtained when the other elements necessary
for producing it were accidentally present when iron was heated. As the years went by,
steel probably was made by heating iron in contact with charcoal. The surface of the
iron absorbed some carbon from the charcoal, which was then hammered into the hot
iron. Repeating this process several times resulted in a case-hardened exterior of steel.
In this way the famous swords of Toledo and Damascus were produced.

The first large volume process for producing steel was named after Sir Henry
Bessemer of England. He received an English patent for his process in 1855, but his ef-
forts to obtain a U.S. patent for the process in 1856 were unsuccessful because it was
shown that William Kelly of Eddyville, Kentucky, had made steel by the same process
seven years before Bessemer applied for his English patent. Although Kelly was given
the patent, the name Bessemer was used for the process.”

Kelly and Bessemer learned that a blast of air through molten iron burned out
most of the impurities in the metal. Unfortunately, at the same time the blow eliminat-
ed some desirable elements such as carbon and manganese. It was later learned that
these needed elements could be restored by adding spiegeleisen, which is an alloy of
iron, carbon, and manganese. It was further learned that the addition of limestone in
the converter resulted in the removal of the phosphorus and most of the sulfur.

Before the Bessemer process was developed, steel was an expensive alloy used
primarily for making knives, forks, spoons, and certain types of cutting tools. The Besse-
mer process reduced production costs by at least 80 percent and allowed for the first
time production of large quantities of steel.

The Bessemer converter was commonly used in the United States until after the
turn of the century, but since that time it has been replaced with better methods, such
as the open-hearth process and the basic oxygen process.

As a result of the Bessemer process, structural carbon steel could be produced in
quantity by 1870, and by 1890, steel had become the principal structural metal used in
the United States.

Today most of the structural steel shapes and plates produced in the United
States are made by melting scrap steel. This scrap steel is obtained from junk cars, and
scrapped structural shapes as well as from discarded refrigerators, motors, typewriters,
bed springs, and other similar items. The molten steel is poured into molds which have
approximately the final shapes of the members. The resulting sections, which are run
through a series of rollers to squeeze them into their final shapes, have better surfaces
and fewer internal or residual stresses than newly made steel.

The shapes may be further processed by cold rolling, by applying various coat-
ings, and perhaps by the process of annealing. This is the process by which the steel is
heated to an intermediate temperature range, held at that temperature for several
hours, and then allowed to slowly cool to room temperature. It results in steel with less
hardness and brittleness, but with greater ductility.

The term cast iron refers to materials with very low carbon content materials,
while the very high carbon content materials are referred to as wrought iron. Steels fall

?American Iron and Steel Institute, Steel 76 (Washington, D.C., 1976), pp-5-11.



