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Preface

This book was tailor-made for the third-year algebra course at McMaster
University. There is very little that is special about the course — every
university must have one like it — except perhaps for the fact that it comes
in two halves, permitting the disenchanted student to bail out midway
through the material.

Those who leave at that point come away with an introductory course
on group theory and, it seems to me, are entitled to see groups in action
as something other than self-fulfilling exercise fodder. Accordingly — and
not very originally — I included a little material on error-correcting codes
and on Rubik’s cube for them.

Students soldiering on into the second term of the course are treated to
an introduction to the theory of rings. For them, I thought it appropriate
to present enough material so that they could see how the two subjects
— rings and groups — eventually joined forces in a major undertaking.
In this book that example is Galois theory — the jewel in the crown of
algebra.

I hope that this succinctly explains the ingredients of the book and
that the table of contents, the index and some browsing through the text
will do the rest.

I am very grateful to my son, Daniel, who typed this manuscript into
Latex and to Carolyn, my wife, who proof-read the typescript. They
did such a thorough job that any blunders which remain are entirely my
responsiblity!

It only remains for me to say a few sentences on why I wrote yet another
book on this amply covered material. Usually the “book of the course”
for this material would be a rather magnificent, expansive tome. I, on
the other hand, have tried to give a rather concise treatment, because I
have found that demanding proofs and exercises tend to encourage more
profitable discussion between the instructor and class. Making the text
more terse, providing one does not attempt to cover too much material,
made the course more enjoyable — at least for me! Had I made the pace of
the book too leisurely I would have run the risk of rendering the instructor
superfluous. Had I made the exercises too easy or repetitious I would have
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run the risk of superannuating the students! Learning mathematics at this
level seems best accomplished by pondering problems on which one gets
stuck rather than repeating finger-exercises with the themes one finds easy.
The McMaster students were good-natured enough to indulge me in these
whims and I responded by trying to strike a workable compromise vis &
vis the exercises. Accordingly, the reader — should there be one — will
find this book terse enough here and there that there will be no alternative
but to discuss the subject with others, preferably fellow students and the
lecturer. The exercises will occasionally be too hard or too few and there
will be no alternative but to ask the instructor for suggestions about where
to look elsewhere.

This book was used as the basis of my 1995/7 courses at McMaster
University during which time I tried to correct as many misprints and
errors as I could. I am particularly grateful to Hayssam “Sam” Hulays,
who was a student in that class and pointed out a number of errors to me
and to Matt Valeriote, who taught the course from this text in 1997/8 and
his student, Kee Ip, who kindly corrected a few more misprints en route.
I have also added some extra exercises which suggested themselves to me
while I was teaching from the “first edition”.

Victor Snaith
McMaster University
December 1997



Preface to the Second
Edition

The second edition of this book differs from the first only by the addition
of two chapters concerned with the modules over rings. In particular,
Chapter Four introduces the notion of a module, imitating the classification
of finitely generated abelian groups in Chapter One in order to classify
finitely generated modules over a principal ideal domain. In Chapter Five,
Dedekind domains are introduced and developed to the point where a
classification of their finitely generated modules can be given. Chapter
Five concludes with the analysis of how the primes of a Dedekind domain
behave under a Galois extension of the field of fractions.

Chapters Four and Five take the reader through the first steps beyond
undergraduate algebra which are essential in order to study algebraic num-
ber theory, for example. Elementary number theory is a very popular un-
dergraduate course at the University of Southampton, which made this
material particularly suitable for a graduate course given there in the Au-
tumn of 1998 to a rather heterogeneous audience consisting of fourth year
undergraduates, PhD students and staff.

Victor Snaith
University of Southampton
May 2003
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Chapter 1

Group Theory

1.1 The concept of a group

The concept of a group, which we are about to study in considerable de-
tail, is one of the many axiomatic structures which constitute the area of
abstract algebra. As the name suggests, this collection of mathematical
gadgets has arisen in response to the desire to construct algebraic abstrac-
tions of familiar phenomena. Although groups are used nowadays in a
number of applications ranging from vibrations of chemical molecules to
error-correcting codes, the fundamental origins of the subject arise from
the algebraicisation of the notion of symmetry. The following examples will
serve to illustrate what this algebraic abstraction is required and expected
to do.

Example 1.1.1 Suppose that we are given a rigid three-dimensional solid
which we will fondly call X, for brevity. Imagine X firmly implanted stably
in some position; for example, X might be a regular tetrahedron resting
on a table. A symmetry of X is any operation consisting of picking X up,
juggling it around in some manner and then replacing it so as to occupy
exactly the same space as before. In abstract algebra it is fashionable (and
sensible) to denote things by algebraic symbols; in particular, let us denote
the symmetries of X by the symbols s1, s2,....

A symmetry of X is not required to return each point of X to the place
from which it started. In fact, in order to keep track of what a symmetry
of X does, it is a good idea to decorate X in some manner with markers.
For example, if X is an equilateral triangle we might number the vertices.
Having done this, the six symmetries of the triangle, X, would look as
follows:
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1.1.2 Symmetries of an equilateral triangle

S1 1
- /\
2 3 2

3

1 Ss 2
/N, T
3 2 3 1

1 36 3
N, — .2
3 2 1 2
Question: Why is this list complete?

1.1.3 The symmetries of an equilateral triangle, while only a very simple
example, can give us some suggestions of what an algebraic abstraction
would be needed for and what it should include. Firstly, it should be
capable of systematising and simplifying the description of all the possible
symmetries of X. Secondly, as part of such a simplification, it should
organise what happens when we take several symmetries of X and perform
these operations one after another in sequence; the result must, after all,
be another in the list of symmetries of X.

In the simple example of §1.1.3 this organisation and description may
be accomplished by listing all the possibilities but, for a general X, this
process will be prohibitively lengthy. Alternatively, we might express the
same symmetry information by tabulating all the symmetries and their
pairwise compositions algebraically.

In the following table the entry in the row labelled s; and column
labelled s; is the symmetry obtained by performing first s; and then s; on
the equilateral triangle, X, of §1.1.3.



1.1. THE CONCEPT OF A GROUP 3

1.1.4 Compositions of symmetries of an equilateral triangle
81|52(83]|84|S5(|S6
81(81(S2(S3(S4|S5|S6
S2182(|83|51|S5|S6|S4
S83183|51(82(|S6(S4|S5
84)|54|S6|85(|S1(S83|S2
85|85|S4(86(|S2(S1|83
86|S6|S5(|54(S3(S82(S1

1.1.5 Notice that the table of compositions given in §1.14 is already a
considerable abstraction of the information embodied in the list of §3.1.3.
For example, if this table were a little larger we might not be able to
guess from it the identity of X, the equilateral triangle, having precisely
six symmetries, composing according to §1.1.4.

Let us repeat the process of listing all the symmetries and tabulating
their compositions for the case in which X is a line-interval and a square.

1.1.6 Symmetries of an interval

There are two symmetries

1 2 1 2

1 B ity 3 1

whose compositions yield the following simple table:
81|82
S1/81(S2
S2(82(81

1.1.7 Symmetries of a square

In this case there are eight symmetries.

1 2 1 2
81
—_—

4 3 4 3
1 2 4 1
82
e
4 3 3 2
1 2 3 4
33
_—
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CHAPTER 1.
2 3
84
—
1 4
4 3
S5
——
1 2
1 4
S6
B ——
2 3
2 1
S7
—_
3 4
3 2
S8
—_—
4 1

Question: Why is this list complete?
Compositions of these eight symmetries are given by the following table.

S1

82

$3

S4

85

36

S7

S8

S1

S1

S2

83

84

S5

S6

87

S8

82

S2

$3

84

S1

S6

S7

S8

S5

83

S3

S4

S1

82

S7

S8

S5

S6

S4

S4

S1

82

83

S8

S5

S6

S7

S5

S5

S8

St

S6

S1

S4

83

S2

86

S6

S5

58

S7

52

S1

84

83

S7

S7

S6

S5

S8

S3

S2

S1

S4

S8

1.1.8 Observation

S8

S7

S6

S5

84

83

82

S1

GROUP THEORY

Notice that in each of the tables of §§1.1.4, 1.1.6 and 1.1.7 the entries

on each row and column are distinct. In fact, each row and column is a

rearrangement (or permutation) of the set of all the symmetries of X.
Question: Can you explain this observation?
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1.1.9 Consider now the three-dimensional example in which X is a regular
tetrahedron whose four vertices are numbered.

2

Question: What are the symmetries of this tetrahedron?

This example is more complicated than the earlier, two-dimensional
examples. However, as a first approximation to an answer, we might at
least try to list some symmetries. Looking back at the examples of §§1.1.3
and 1.1.7, one sees that it can be helpful to classify the symmetries into
types. For example, in the case of X being a equilateral triangle or a square,
half the symmetries flip X onto its back and half of them do not.

Questions: What observations can you make about the behaviour of the
‘flips’ and ‘non-flips’ in the tables of §§1.1.4 and 1.1.7? Can you explain
these observations?

In the case of the regular tetrahedron some types of symmetries which
come to mind are:

(a) clockwise rotations through ¢ or %” about an axis from a vertex to
the centroid of the opposite side. There are two such symmetries for
each vertex, making eight rotations in all.

(b) the symmetry which leaves every point of the tetrahedron where it is.
This is sometimes called trivial symmetry.

(c) rotations through 7 about an axis joining midpoints of two opposite
sides. The tetrahedron has six sides but each side has precisely one
opposite side, making three pairs of opposite sides in all.

The total number of symmetries listed in (a) to (c) is twelve.

Question: Are these twelve the only symmetries of the regular tetrahe-
dron? (Hint: When studying symmetries of a polyhedron it is sometimes
helpful to classify them by how many vertices, edges, etc. remain fixed
under the symmetry.)

The following definition of a group is one attempt at an axiomatic
algebraic structure that is abstracted from the symmetries of X and their
behaviour under composition. The idea is to make an algebraic gadget
whose ‘multiplication’ operation imitates the composing of two symmetries
of X to obtain a third.
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Definition 1.1.10 A group is a set, G, of elements (denoted by lower case
letters of the alphabet — a, b, c, ...) together with a law of composition
(often called the multiplication in G) which is a map

GxG—G

which sends an ordered pair (a,b) € G x G to their product, denoted by
ab € G. The multiplication in G satisfies the following axioms:

G1: (Associativity)

Given any three elements belonging to G — a,bc € G,
say — then

(ab)c = a(be)

G2: (Identity or Neutral element)

There exists an element, e € G, such that ae = a = ea for all a € G.

G3: (Inverses)

Given any a € G there exists an element b € G, called the inverse of
a, such that ab = e = ba. (Usually we shall write a~! for the inverse of a,
because it is a notationally suggestive and convienient convention.)

Axioms G1 - G3 are slightly redundant and can be replaced by the
equivalent, meaner, leaner Axioms G1,G’2,G’3 in which G’2 guarantees
only a “left neutral” element, e, and G’3 guarantees only a “left inverse”
for each a € G. Since these axioms are simpler to verify we shall pause to
prove this result.

Lemma 1.1.11 Let G be a set with a “product”, as in §1.1.10, which
satisfies Axiom G1 and

G'2: (left identity)

There exists an element, e € G, such that ea = a for all a € G.

G'3:

Given any a € G there exists an element b € G such that ba = e.

With these axioms, the product in G satisfies axioms G1 — G3 of §1.1.10
and G is a group.

Proof

To prove G2 we must show that ae = a for all a € G. We, at least, know
that this is true for all a = e since, in this case, ee = e, is the same equation
as that of G'2. By G’3, we have ba = e, so that we may substitute for two
of the e’s in the equation ee = e to obtain

(ba)e = ba.

Now choose ¢ such that ¢b = e (it does not matter that, with our
depleted axiom scheme, we do not yet know that ¢ = a.). Multiplying on
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the left by c yields
ae = (ea)e by G'2
= ((cb)a)e by G1
= (c(ba))e by G1
= ¢((ba)e) by G1

= c(ba)

= (cb)a by G1
=ea

=a by G'2.

To verify G3 we must show that, if ba = e, then ab = e. Substituting
for e in eb = b we obtain

b = (ba)b = b(ab).

Now choose ¢ such that ¢b = e and multiply this equation on the left
by ¢ to obtain

e=cb
= c(b(ab))
= (cb)(ab) by G1
= e(ab)
= ab by G'2

which completes the proof of the lemma.O

Remark 1.1.12 (i) Since the definition of §1.1.10 was intended to imitate
the set of symmetries, with “multiplication” given by composition, we
should verify that axioms G1 — G3 are true for this example.

Firstly, let us agree that if a and b are symmetries of X then ab is to
be the symmetry given by first performing b and then performing a.

With this convention (ab)c means the symmetry given by first perform-
ing ¢ and then performing the composite symmetry called “first b then a”.
On the other hand, a(bc) means first perform the composite “first ¢ then
b” and then follow the result by performing a. Both these recipes are long-
winded ways of describing the composite symmetry “first perform ¢, then
b and then a”. Therefore the axiom G1 is true for the symmetries of X.

Secondly, let e denote the trivial symmetry, which leaves every point of
X where it is. If a is any symmetry of X then the effect of the symmetry
ae is first to move each point of X nowhere and then to perform a. This
is merely a tortuous description of the symmetry, a. Similarly ea stands
for the symmetry “first perform a and then leave every point of X where
it is”, which is another roundabout description of a. Therefore the axiom
G2 is true for symmetries of X.
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The verification of G3 for symmetries of X is connected with the ob-
servation of §1.1.8 and is easily seen in those examples in terms of the
“multiplication” tables of §§1.1.4, 1.1.6 and 1.1.7. In each of those exam-
ples the row labelled by s; contains each symmetry just once. In particular
the trivial symmetry, s;, will appear in some column; the one labelled by
sj, say. In terms of “multiplication” of symmetries this is equivalent to
the equation

§i{85 = 81 = €.

Now, consulting the entry in the j-th row and i-th column is seen to
yield the equation

§j8; = 81 = €.

In these examples, this process serves to verify axiom G3. A closer look
at these examples shows that the inverse of the symmetry, a, is nothing
more than the symmetry, b, of X which takes each point of X back to
the point from which a moved it. For this choice of b it is clear that ba
denotes “first move points of X by a and then put them back”, which is
an elaborate description of the trivial symmetry under which each point
of X stays where it is; that is, ba = e. Similarly, for this choice of b, ab
denotes “take a point of X back to where a found it and then return it to
its original position by a”; that is, ab = e.

(ii) To tabulate the table of compositions of symmetries of X, as in
§81.1.4, 1.1.6 and 1.1.7, is to tabulate the multiplication table of the group
of symmetries of X. In general, given a group, G, and a modicum of deter-
mination we could depict the group by writing out a similar multiplication
table.

(iii) In axioms G2 and G3 reference is made to the identity element of
G and the inverse of a € G. Before we go any further we should derive
from the axioms the fact that those references to unique elements were
not merely faux pas. That is, we should convince ourselves that a group
does not have several neutral elements and that an element does not have
several inverses.

Let us pause to record the result of the discussion of §1.1.12 (i).

Theorem 1.1.13 The set of all symmetries of X, as defined in §1.1.1,
with “multiplication” given by composition in the manner of §1.1.12 (i),
satisfies the axioms of a group. Henceforth this group will be referred to
as the symmetry group of X.

Lemma 1.1.14 (i) In axiom G2 of §1.1.10 the neutral element is unique.
(ii) In axiom G3 of §1.1.10 the inverse of a € G is uniquely determined
by a.



