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Preface

In September 1989, a NATO Advanced Research Workshop on “Continuation and
Bifurcations : Numerical Techniques and Applications” was held at the Katholieke
Universiteit Leuven, Belgium. Participants came from 10 countries in Europe and
North America and were mainly from universities and research institutes. This
proceedings volume contains 26 of the 38 papers which were presented at the
meeting. Abstracts of most other contributions are also included. :

The central theme of the workshop was the solution of parameter dependent
nonlinear problems using numerical continuation. More specifically the aims can
be stated as : to describe typical bifurcation problems in scientific, engineering and
industrial problems ; to discuss current mathematical ideas and new developments
in numerical analysis and numerical techniques and to describe and evaluate
program packages and to discuss future needs with respect to software.

The interests of the participants extended over the complete spectrum of
theory, numerical analysis, software and applications, and this spread is reflected
both in the composition of this volume and in several of the papers. For example,
there are contributions on the application of: Centre Manifold and Liapunov-
Schmidt theory to derive low dimensional systems which can be analysed by
normal form theory for dynamical systems or singularity theory. On the
numerical analysis front there are contributions, for example, on the computation
of homoclinic and heteroclinic orbits, on the detection of Hopf bifurcations, on the
computation of bifurcations in the presence of symmetry, on the calculation of
rotating waves, and on the use of inertial manifolds in the bifurcation analysis of
the Kuramoto-Sivashinski equation. Also included are descriptions of software
packages for use on personal computers, and contributions on the use of symbolic
manipulation codes. Several interesting applications are described, including
separation in 3-D Navier Stokes flows, chaos in electrical circuits, the dynamics of
passive optical systems and Marangoni convection in crystal growth.

The editors wish to thank the participants who made the workshop so
successful, and the NATO Scientific Affairs Division, the National Science
Foundation of Belgium (N.F.W.0.), the Ministry of Education of the Flemish
Government and the K. U.Leuven. for their generous sponsorship of the
workshop. Finally, the editors acknowledge the opportunity given by Kluwer to
publish the proceedings in the NATO ASI Series.

Dirk Roose Bart De Dier Alastalr Spence
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BIFURCATION TO ROTATING WAVES FROM NON-TRIVIAL S‘l'EADY-é'l‘ATES

P. J. ASTON A. SPENCE and W. WU

Department of Mathematics School of Mathematical Sciences
University of Surrey University of Bath
Guildford GU2 SXH Bath BA2 7AY

United Kingdom United Kingdom

ABSTRACT. This paper considers bifurcation problems which arc equivariant with respect (o the rota-
tions (or translations) r,, a€[0,2x) and the two reflections 5; and s, which generate a group that we
call O*(2). The rotational equivariance forces the linearisation of the problem to have a zero eigenvalue,
al every non-trivial steady-state solution. We show that when this zero eigenvalue has algebraic multi-

-plicity two but geometric multiplicity one then bifurcation to rotating (or travelling) waves occurs, sub-
ject to a non-degeneracy condition. This result is obtained by reformulating the problem as a standard
steady-state bifurcation in the presence of a reflectional symmetry. Finally, the generic form of bifurca-
tion from rotating waves is considered.

1. Introduction

We consider bifurcation from a non-trivial branch of steady-state solutions to rotating (or trav-
elling) wave solutions of the time-dependent nonlinear problem

% +g(X,2)=0, 20 1.1

where g is a C2-mapping from HxR into H, a Hilbert space with inner product < , >. In our
previous paper (Aston, Spence and Wu (1989)) we assume that g is O(2)-equivariant, that is,

] 78(X, ) = g(¥X, A) VyeO(2), XeH (12)
where O(2) is the group generated by the rotations r,, ae[0, 2z) and a reflection s. One
example of this arises when the steady-state problem g(X, 1)=0 represents a boundary value
problem in one space dimension, say o, with periodic boundary conditions. In this case, g is
often equivariant with respect to r,,, which acts by rotation or translation as

rX(o, t) = X(o+a, t), a€[0, 2x),
and one of the two reflections s; and s, which act by
51X(o,0) = X(-0,1)
5X(0,t) = -X(-0,1).
In this paper, we extend our previous results to the case when g is equivariant with respect to
r, and both reflections s; and s,. This situation arises in reaction-diffusion equations when the
‘l 4

D. Roose et al. (eds.), Continuation and Bifurcations: Numerical Techniques und Applications, 1-8.
© 1990 Kiuwer Academic Publishers. Printed in the Netherlands.



nonlinear reaction function is odd in X.

Other authors have considered bifurcation from the trivial solution to rotating waves which
arises as a Hopf bifurcation (see for example Iooss (1984)). However, there is an additional
complication when considering bifurcation from a non-trivial branch of steady-state solutions,
namely that gy(X, 4) is singular at every solution point (see Lemma 2.1). We shall show how
this difficulty may be overcome by using a phase condition which enables us to reformulate
the problem as a standard, steady-state bifurcation in the presence of a reflectional symmetry.
We then show (see Theorem 3.3) that bifurcation to rotating waves occurs when gy(X,4) has a
zero eigenvalue with geometric multiplicity one and algebraic multiplicity two, subject to a
non-degeneracy condition. This is in direct contrast to Hopf bifurcation where a complex con-
jugate pair of eigenvalues must cross the imaginary axis to produce a branch of time-periodic
solutions.

No numerical results are presented here but we refer the reader to Aston et al (1989) where
results for the Kuramoto-Sivashinsky equation are presented. Other numerical results for bifur-
cation to rotating waves from non-trivial steady-state solutions are given in Scovel, Kevrekidis
and Nicolaenko (1988) and Kevrekidis, Nicolaenko and Scovel (1989).

Finally, we assume throughout that H is finite-dimensional although the extension to infinite
dimensions described in Aston et al (1989) applies here also.

2. Preliminary Theory

We now set up the problem in a framework suitable for the bifurcation analysis of Section 3.
We are interested in solutions of (1.1), where g is equivariant with respect to the rotations 7,,
ae(0, 2x) and the reflections s, and s, which satisfy the relations
Sifa = MNg-aSi » =12 (2.1a)
518 = 58 . (2.1b)

We define s;,:=s515, and we refer to the group generated by r,, s, and s, as 0%*(2). Letus
now introduce our terminology. We call (x, 1) a steady-state solution of (1.1) if

g(x,4)=0 2.2)
and (X(¢), 1) a rotating wave solution of (1.1) if
X(t) = rgx 2.3)

where ceR is the velocity of the wave and xeH is independent of time. We define the follow-
ing subspaces of H:

= (xeH : s;x=x)}
= (xeH : 51x=—x)
= {xeH : ox=x, VoeX}
where I is any subgroup of 0%(2). We will refer to xeHE as Z—symmetric. We also define

re'x = %(r.x).
A2=fo'.
Then r,’ is a bounded linear operator on H since the group action is smooth on finite-



dimensional Hilbert spaces (Knapp (1986)).
We assume, without loss of generality (Golubitsky, Stewart and Schaeffer (1988, p31)), that
the inner product < , > is O%(2)-invariant, that is

<yx, yy> = <x,y> Vx,yeH, ye0*Q2).

For the sake of simplicity, we assume that HO® = {0} so that (1.1) has the trivial, steady-
state solution x=0 for all AcR. Applying the theory outlined in Aston (1990) to bifurcation
from the O%(2)-symmetric trivial solution shows that steady-state, symmetry-breaking bifurca-
tion can occur where the resulting primary branches of solutions are symmetric with respect to
Fau/n» S1 and Sy7.f, for some neZ* (by the Equivariant Branching Lemma). Use of the rela-
tions (2.1) gives (.mr,,/u)2 = rae/» and so this group is precisely the dihedral group D,, gen-
erated by the "rotation" s157,/, and the reflection s;. The primary branches of solutions thus lie
in Hb" xR. The main result of this paper (Theorem 3.3) is to show that bifurcation from such
a primary branch of steady-state solutions to a branch of rotating wave solutions of the form
(2.3) occurs when the s,-symmetry is broken. This result can be proved in the context of
steady-state bifurcation theory using the equation which we now derive.

It is easily shown, by differentiating (2.1a) with respect to a, that the linear operator A anti-
commutes with both s, and s, and hence commutes with s,,. Similarly, A commutes with r,.
It follows from this and the equivariance of g that a rotating wave solution (r.x, 1) of (1.1)
satisfies the "steady-state” equation

g(x,c,2):=8(x,2) +cAx=0, 24)

and that Z is equivariant with respect to r,, a€[0,2x) and s;, only. Thus, if (x, ¢, 1) is a
solution of (2.4), then (7,x, ¢, 1) is also a solution for all ae[0,2z) due to the r,-
equivariance of g, giving rise to an orbit of conjugate solutions. In order to eliminate this
nonuniqueness, we introduce a phase condition of the form

<l,x>=0, leH. _ 2.5)
We then rewrite (2.4) and (2.5) as
G(y,A)=0, G: YXR-Y,

g(x,A)+cAx
G(y.l):-?[ <l, x> ] - (2.6).

y=(x,c)eY:=HxXR.
and define an inner product on Y by
N-Y2 =<X,. 0>+ 010

where y;=(x;, ¢;), i=1,2. (See Aston et al (1989) for details of the analysis using a more gen-
eral phase condition.)

Differentiating the r,-equivariance condition for g with respect to a leads to the following
result.

Lemma 2.1
If (x, ¢, 1) is a solution of (2.4), then

2.(x, c, Ax =0 . loX)



When considering bifurcation from the trivial solution x=0, this result provides no informa-
tion since Ax=0. However, since we are considering bifurcation from a non-trivial branch of
(steady-state) solutions, Ax+0 and so Z,(x, 0, 1)=g,(x, 1) has a non-trivial null space at
every non-trivial steady-state solution of (1.1). Also, since we are considering a branch of solu-
tions with er”". then Null(g,(x, A)) must be D,,-invariant (see Aston (1990)) and so
yAxeNull(g,(x, A)) for all yeD,,. However, since s; anti-commutes with A, we have
$jAx=—As;x=—Ax. Similarly, 5i3r,/sAx=Ax. Thus, the one-dimensional space spanned by Ax
is Dy,-invariant and so we obtain no new null-vectors. The phase condition (2.5) can be
viewed as a means of eliminating this singularity in the system (2.6). In particular, if (x, ¢, 1)
is a solution of (2.4), then (Ax, 0) will not be in the null space of G,((x, ¢), 4) provided that
the non-degeneracy condition

<l, Ax> %0 (2.8)
is satisfied. '
Finally, the system (2.6) inherits certain equivariance properties from 2. If we define group
actions on Y in terms of those on H by
§1y = (5%, =¢),
Say = (8%, =),
Refny = (TafaX. €),

where y=(x, c)eY, then we have the following result which is proved using the invariance of
the inner product.

Lemma 22

If leH™ NH,, where Z,, is the cyclic group generated by r,/,, then G is equivariant with
respect to S; and S;,R,/, where S;;:=5,5,.

Note that solutions of (2.6) which satisfy S;y=y must have c=0 and automatically satisfy the
phase condition and so they consist of steady-state solutions of (1.1) contained in H,. Thus, the
primary branch solutions referred to earlier consist precisely of D,,-symmetric solutions of
(2.6) where D,, is the group generated by §; and S12Refn. Note that S5R [,y = (S127x/aX, €)
and so S;2R,/,-symmetric solutions do not necessarily have ¢=0.

- 3. Analysis of bifurcation to rotating waves

We now apply standard symmetry-breaking bifurcation techniques to G(y, 4)=0 defined by
(2.6) to prove the existence of a branch of rotating waves bifurcating from a non-trivial branch
of steady-state solutions contained in H * xR for. some neZ™*, subject to d non-degeneracy
condition. &

The first step is to restrict the problem to an appropriate fixed point subspace of Y. Since
the linear operator A commutes with 7., @€[0, 2z) apd anti-commutes with s, and s,, it fol-
lows that if xeH D“. then the one-dimensional subspace of H spanned by Ax is D,-invariant
and so it must also be D,,-irreducible since it has no proper subspaces. Thus, Ax is contained
in one of the isotypic components of A and so only the corresponding "block" of g,(x, 1) will



5

be singular at every steady-state solution (x, 1)eH *xR of (2.1) (see Aston (1990)). If
xeH ™, then the irreducible representation of D,, on the subspace spanned by Ax is
s =0[=11, sprgfs=11].,

Mnﬂnoompommgisotypiccanpownisﬂz"nli. where 2,, is the cyclic group of
order 2n generated by s),7,/,. As we are only interested in bifurcation associated with this
isotypic component, we take our setting to be

7 = v = H2 xR G.19)
and restrict G accordingly. Thus, we consider the system
G(»4)=0, G:fxR - 7,

. cAx
G(.2) = [8(";}3;; ] @.1b)
y=(x.c)e?, leH™nH,,.

Stnce 8127/, acts as the identity on H 2>, the only non-trivial action of 5, on 7 is the reflec-
tion §,. Using this reflection, we decompose ¥ as ¥ = ¥, ®¥, where

7, = (ye : Siy = y) = H?*x(0)
P, :=(yef : S;y=-y) = (Hz"nﬂ.)xk \

Clearly, solutions of (3.1) with ye?, are steady-state, 5,,-symmetric solutions of (1.1). Since
7, and 7, are invariant under G,(y,, 1) for all y,e¥,, we denote the restrictions of G(,, 1)
o ¥, and ¥, by G;(y,. 2) and GJ(y,, A) respectively.

The analysis now follows similar lines to that of Aston et al (1989) and so we only summar-
ise the main results briefly without proofs. Thus, we now assume that there exists a steady-
state solution (%, 4)eH ™ xR of (2.1). We have already seen that at such a point
AxyeNull(g?), where we use the notation g2:=g.(xy, 1), and so we now make the further
assumption that the zero eigenvalue of g2 has geometric multiplicity one and algebraic multi-
plicity mwo. This assumption can be summarised by the following conditions, where * denotes
the adjoint operator :

Null(g) = span{Ax) (32a)
Null((g)") = span{y, ) > (3:2b)
<y, A> =0 (32¢c)
<. 6>%0 (3.2d)
where

86 +A% =0, <l §>=0. (32¢)

Flmny.wealsoassumematlenz"nﬂ, is chosen so that
<l, Axy> %0 . (329

Now symmetry-breaking bifurcation can occur if Gj(yp, 49) has a non-trivial null-space,
where yo=(xo, 0). '



