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Preface

Ants exhibit complex social behaviors that have long since attracted the attention of
human beings. Probably one of the most noticeable behaviors visible to us is the for-
mation of so-called ant streets. When we were young, several of us may have stepped
on such an ant highway or may have placed some obstacle in its way just to see how
the ants would react to such disturbances. We may have also wondered where these
ant highways lead to or even how they are formed. This type of question may be-
come less urgent for most of us as we grow older and go to university, studying other
subjects like computer science, mathematics, and so on. However, there are a con-
siderable number of researchers, mainly biologists, who study the behavior of ants in
detail.

One of the most surprising behavioral patterns exhibited by ants is the ability of
certain ant species to find what computer scientists call shortest paths. Biologists
have shown experimentally that this is possible by exploiting communication based
only on pheromones, an odorous chemical substance that ants may deposit and
smell. It is this behavioral pattern that inspired computer scientists to develop algo-
rithms for the solution of optimization problems. The first attempts in this direction
appeared in the early '90s and can be considered as rather “toy’” demonstrations,
though important for indicating the general validity of the approach. Since then,
these and similar ideas have attracted a steadily increasing amount of research—and
ant colony optimization (ACO) is one outcome of these research efforts. In fact,
ACO algorithms are the most successful and widely recognized algorithmic tech-
niques based on ant behaviors. Their success is evidenced by the extensive array of dif-
ferent problems to which they have been applied, and moreover by the fact that ACO
algorithms are for many problems among the currently top-performing algorithms.

Overview of the Book

This book introduces the rapidly growing field of ant colony optimization. It gives a
broad overview of many aspects of ACO, ranging from a detailed description of the
ideas underlying ACO, to the definition of how ACO can generally be applied to a
wide range of combinatorial optimization problems, and describes many of the avail-
able ACO algorithms and their main applications. The book is divided into seven
chapters and is organized as follows.

Chapter 1 explains how ants find shortest paths under controlled experimental
conditions, and illustrates how the observation of this behavior has been translated
into working optimization algorithms.
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In chapter 2, the ACO metaheuristic is introduced and put into the general context
of combinatorial optimization. Basic notions of complexity theory, such as ANP-
hardness, are given and other major metaheuristics are briefly overviewed.

Chapter 3 is dedicated to the in-depth description of all the major ACO algorithms
currently available in the literature. This description, which is developed using the
traveling salesman problem as a running example, is completed by a guide to imple-
menting the algorithms. A short description of a basic C implementation, as well
as pointers to the public software available at www.aco-metaheuristic.org/aco-code/,
is given.

Chapter 4 reports on what is currently known about the theory of ACO algorithms.
In particular, we prove convergence for a specific class of ACO algorithms and we
discuss the formal relation between ACO and other methods such as stochastic gra-
dient descent, mutual-information-maximizing input clustering, and cross-entropy.

Chapter 5 is a survey of current work exploiting ACO to solve a variety of combi-
natorial optimization problems. We cover applications to routing, assignment, sched-
uling, and subset problems, as well as a number of other problems in such diverse
fields as machine learning and bioinformatics. We also give a few “application prin-
ciples,” that is, criteria to be followed when attacking a new problem using ACO.

Chapter 6 is devoted to the detailed presentation of AntNet, an ACO algorithm
especially designed for the network routing problem, that is, the problem of building
and maintaining routing tables in a packet-switched telecommunication network.

Finally, chapter 7 summarizes the main achievements of the field and outlines some
interesting directions for future research.

Each chapter of the book (with the exception of the last chapter) ends with the
following three sections: bibliographical remarks, things to remember, and exercises.

* Bibliographical remarks, a kind of short annotated bibliography, contains pointers
to further literature on the topics discussed in the chapter.

= Things to remember is a bulleted list of the important points discussed in the
chapter.

= Exercises come in two forms, thought exercises and computer exercises, depending
on the material presented in the chapter.

Finally, there is a long list of references about ACO algorithms that gives a lot of
pointers to more in-depth literature.

Overall, this book can be read easily by anyone with a college-level scientific back-
ground. The use of mathematics is rather limited throughout, except for chapter 4,
which requires some deeper knowledge of probability theory. However, we assume
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that the reader is familiar with some basic notions of graph theory, programming,
and probabilities. The book is intended primarily for (1) academic and industry
researchers in operations research, artificial intelligence, and computational intelli-
gence; (2) practitioners willing to learn how to implement ACO algorithms to solve
combinatorial optimization problems; and (3) graduate and last-year undergraduate
students in computer science, management science, operations research, and artificial
intelligence.
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1 From Real to Artificial Ants

I am lost! Where is the line?!
—A Bug'’s Life, Walt Disney, 1998

Ant colonies, and more generally social insect societies, are distributed systems that,
in spite of the simplicity of their individuals, present a highly structured social orga-
nization. As a result of this organization, ant colonies can accomplish complex tasks
that in some cases far exceed the individual capabilities of a single ant.

The field of “ant algorithms” studies models derived from the observation of real
ants’ behavior, and uses these models as a source of inspiration for the design of
novel algorithms for the solution of optimization and distributed control problems.

The main idea is that the self-organizing principles which allow the highly coordi-
nated behavior of real ants can be exploited to coordinate populations of artificial
agents that collaborate to solve computational problems. Several different aspects of
the behavior of ant colonies have inspired different kinds of ant algorithms. Ex-
amples are foraging, division of labor, brood sorting, and cooperative transport. In
all these examples, ants coordinate their activities via stigmergy, a form of indirect
communication mediated by modifications of the environment. For example, a for-
aging ant deposits a chemical on the ground which increases the probability that
other ants will follow the same path. Biologists have shown that many colony-level
behaviors observed in social insects can be explained via rather simple models in
which only stigmergic communication is present. In other words, biologists have
shown that it is often sufficient to consider stigmergic, indirect communication to
explain how social insects can achieve self-organization. The idea behind ant algo-
rithms is then to use a form of artificial stigmergy to coordinate societies of artificial
agents.

One of the most successful examples of ant algorithms is known as “ant colony
optimization,” or ACO, and is the subject of this book. ACO is inspired by the for-
aging behavior of ant colonies, and targets discrete optimization problems. This in-
troductory chapter describes how real ants have inspired the definition of artificial
ants that can solve discrete optimization problems.

1.1 Ants’ Foraging Behavior and Optimization

The visual perceptive faculty of many ant species is only rudimentarily developed
and there are ant species that are completely blind. In fact, an important insight of
early research on ants’ behavior was that most of the communication among indi-
viduals, or between individuals and the environment, is based on the use of chemicals
produced by the ants. These chemicals are called pheromones. This is different from,
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for example, what happens in humans and in other higher species, whose most im-
portant senses are visual or acoustic. Particularly important for the social life of some
ant species is the trail pheromone. Trail pheromone is a specific type of pheromone
that some ant species, such as Lasius niger or the Argentine ant Iridomyrmex humilis
(Goss, Aron, Deneubourg, & Pasteels, 1989), use for marking paths on the ground,
for example, paths from food sources to the nest. By sensing pheromone trails for-
agers can follow the path to food discovered by other ants. This collective trail-laying
and trail-following behavior whereby an ant is influenced by a chemical trail left by
other ants is the inspiring source of ACO.

1.1.1 Double Bridge Experiments

The foraging behavior of many ant species, as, for example, 1. humilis (Goss et al.,
1989), Linepithema humile, and Lasius niger (Bonabeau et al., 1997), is based on in-
direct communication mediated by pheromones. While walking from food sources to
the nest and vice versa, ants deposit pheromones on the ground, forming in this way
a pheromone trail. Ants can smell the pheromone and they tend to choose, proba-
bilistically, paths marked by strong pheromone concentrations.

The pheromone trail-laying and -following behavior of some ant species has been
investigated in controlled experiments by several researchers. One particularly bril-
liant experiment was designed and run by Deneubourg and colleagues (Deneubourg,
Aron, Goss, & Pasteels, 1990; Goss et al., 1989), who used a double bridge connect-
ing a nest of ants of the Argentine ant species 1. humilis and a food source. They ran
experiments varying the ratio r = /;//; between the length of the two branches of the
double bridge, where /; was the length of the longer branch and / the length of the
shorter one.

In the first experiment the bridge had two branches of equal length (r = 1; see
figure 1.1a). At the start, ants were left free to move between the nest and the food
source and the percentage of ants that chose one or the other of the two branches
were observed over time. The outcome was that (see also figure 1.2a), although in the
initial phase random choices occurred, eventually all the ants used the same branch.
This result can be explained as follows. When a trial starts there is no pheromone on
the two branches. Hence, the ants do not have a preference and they select with the
same probability any of the branches. Yet, because of random fluctuations, a few
more ants will select one branch over the other. Because ants deposit pheromone
while walking, a larger number of ants on a branch results in a larger amount of
pheromone on that branch; this larger amount of pheromone in turn stimulates more
ants to choose that branch again, and so on until finally the ants converge to one
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Figure 1.1
Experimental setup for the double bridge experiment. (a) Branches have equal length. (b) Branches have
different length. Modified from Goss et al. (1989).
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Figure 1.2

Results obtained with fridomyrmex humilis ants in the double bridge experiment. (a) Results for the case in
which the two branches have the same length (r = 1); in this case the ants use one branch or the other in
approximately the same number of trials. (b) Results for the case in which one branch is twice as long as
the other (r = 2); here in all the trials the great majority of ants chose the short branch. Modified from
Goss et al. (1989).
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single path. This autocatalytic or positive feedback process is, in fact, an example of
a self-organizing behavior of the ants: a macroscopic pattern (corresponding to the
convergence toward one branch) emerges out of processes and interactions taking
place at a “microscopic” level (Camazine, Deneubourg, Franks, Sneyd, Theraulaz,
& Bonabeau, 2001; Haken, 1983; Nicolis & Prigogine, 1977). In our case the con-
vergence of the ants’ paths to one branch represents the macroscopic collective be-
havior, which can be explained by the microscopic activity of the ants, that is, by the
local interactions among the individuals of the colony. It is also an example of stig-
mergic communication (for a definition of stigmergy, see section 1.4): ants coordinate
their activities, exploiting indirect communication mediated by modifications of the
environment in which they move.

In the second experiment, the length ratio between the two branches was set to
r =2 (Goss et al., 1989), so that the long branch was twice as long as the short one
(figure 1.1b shows the experimental setup). In this case, in most of the trials, after
some time all the ants chose to use only the short branch (see figure 1.2b). As in the
first experiment, ants leave the nest to explore the environment and arrive at a deci-
sion point where they have to choose one of the two branches. Because the two
branches initially appear identical to the ants, they choose randomly. Therefore, it
can be expected that, on average, half of the ants choose the short branch and the
other half the long branch, although stochastic oscillations may occasionally favor
one branch over the other. However, this experimental setup presents a remarkable
difference with respect to the previous one: because one branch is shorter than the
other (see figure 1.1b), the ants choosing the short branch are the first to reach the
food and to start their return to the nest. But then, when they must make a decision
between the short and the long branch, the higher level of pheromone on the short
branch will bias their decision in its favor. Therefore, pheromone starts to accumu-
late faster on the short branch, which will eventually be used by all the ants because
of the autocatalytic process described previously. When compared to the experiment
with the two branches of equal length, the influence of initial random fluctuations
is much reduced, and stigmergy, autocatalysis, and differential path length are the
main mechanisms at work. Interestingly, it can be observed that, even when the long
branch is twice as long as the short one, not all the ants use the short branch, but a
small percentage may take the longer one. This may be interpreted as a type of “path
exploration.”

It is also interesting to see what happens when the ant colony is offered, after
convergence, a new shorter connection between the nest and the food. This situation
was studied in an additional experiment in which initially only the long branch was
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Figure 1.3

In this experiment initially only the long branch was offered to the colony. After 30 minutes, when a stable
pheromone trail has formed on the only available branch, a new shorter branch is added. (a) The initial
experimental setup and the new situation after 30 minutes, when the short branch was added. (b) In the
great majority of the experiments, once the short branch is added the ants continue to use the long branch.

offered to the colony and after 30 minutes the short branch was added (see figure
1.3). In this case, the short branch was only selected sporadically and the colony was
trapped on the long branch. This can be explained by the high pheromone concen-
tration on the long branch and by the slow evaporation of pheromone. In fact, the
great majority of ants choose the long branch because of its high pheromone con-
centration, and this autocatalytic behavior continues to reinforce the long branch,
even if a shorter one appears. Pheromone evaporation, which could favor explora-
tion of new paths, is too slow: the lifetime of the pheromone is comparable to the
duration of a trial (Goss et al., 1989), which means that the pheromone evaporates
too slowly to allow the ant colony to “forget” the suboptimal path to which they
converged so that the new and shorter one can be discovered and “learned.”

1.1.2 A Stochastic Model

Deneubourg and colleagues (Deneubourg et al., 1990; Goss et al., 1989) proposed a
simple stochastic model that adequately describes the dynamics of the ant colony as
observed in the double bridge experiment. In this model, s ants per second cross the
bridge in each direction at a constant speed of v cm/s, depositing one unit of phero-
mone on the branch. Given the lengths /; and /; (in cm) of the short and of the long
branch, an ant choosing the short branch will traverse it in 7, = /;/v seconds, while
an ant choosing the long branch will use r - #; seconds, where r = [;/I;.

The probability p;,(7) that an ant arriving at decision point i € {1,2} (see figure
1.1b) selects branch a € {s,/}, where s and / denote the short and long branch re-
spectively, at instant 7 is set to be a function of the total amount of pheromone ¢,, ()
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on the branch, which is proportional to the number of ants that used the branch until
time 7. For example, the probability p;(z) of choosing the short branch is given by

(1, + 0,5(1))"
ts + ()" + (1 + 9y (1))"

where the functional form of equation (1.1), as well as the value o = 2, was derived
from experiments on trail-following (Deneubourg et al., 1990); p;(7) is computed
similarly, with p;(7) + pu(t) = 1.

This model assumes that the amount of pheromone on a branch is proportional to
the number of ants that used the branch in the past. In other words, no pheromone
evaporation is considered by the model (this is in accordance with the experimental
observation that the time necessary for the ants to converge to the shortest path has
the same order of magnitude as the mean lifetime of the pheromone (Goss et al.,
1989; Beckers, Deneubourg, & Goss, 1993)). The differential equations that describe
the evolution of the stochastic system are

do;/dt = ypis(t = &) +ypis(0),  (i=1,j=2i=2,j=1), (1.2)
doy/dt = yYpu(t —r-t) +ypu(t),  (i=1,j=2i=2,j=1). (1.3)

Equation (1.2) can be read as follows: the instantaneous variation, at time 7, of
pheromone on branch s and at decision point 7 is given by the ants’ flow i, assumed
constant, multiplied by the probability of choosing the short branch at decision point
j at time 7 — £, plus the ants’ flow multiplied by the probability of choosing the short
branch at decision point 7 at time 7. The constant 7, represents a time delay, that is,
the time necessary for the ants to traverse the short branch. Equation (1.3) expresses
the same for the long branch, except that in this case the time delay is given by r - f,.

The dynamic system defined by these equations was simulated using the Monte
Carlo method (Liu, 2001). In figure 1.4, we show the results of two experiments
consisting of 1000 simulations each and in which the branch length ratio was set to
r=1 and to r = 2. It can be observed that when the two branches have the same
length (r = 1) the ants converge toward the use of one or the other of the branches
with equal probability over the 1000 simulations. Conversely, when one branch is
twice as long as the other (r = 2), then in the great majority of experiments most of
the ants choose the short branch (Goss et al., 1989).

In this model the ants deposit pheromone both on their forward and their back-
ward paths. It turns out that this is a necessary behavior to obtain convergence of the
ant colony toward the shortest branch. In fact, if we consider a model in which ants
deposit pheromone only during the forward or only during the backward trip, then

plﬂ?(t):( (11)



