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This book was written to provide an integrated one-year course in linear algebra
and multivariable calculus and is intended to follow a standard course in one-variable
calculus.

The topics have been organized so that the algebra and calculus are interwoven,
reinforcing each other. Thus the role played by linear algebra in the calculus becomes
clear, and abstract mathematical structures are introduced with proper motivation.
Ideas in the multivariable calculus are given as natural restatements of their one-vari-
able counterparts.

Although the topics were chosen with a view to the needs of students preparing
for further work in mathematics, physics, and economics, they conform closely to the
recommendations of the Committee on the Undergraduate Program in Mathematics
(CUPM). This book forms an integrated version of Mathematics 3 and 4 as outlined in
the pamphlet A General Curriculum in Mathematics for Colleges, prepared by CUPM
in 1965.

The material has been arranged to provide motivation, review, and reinforce-
ment of the central ideas. We have not tried to develop an important idea entirely in
one section but have spread the development over several sections. For example, the
notion of the jacobian matrix is essential to the study of nonlinear functions, since it
allows them to be approximated by linear functions. This central idea is introduced in
a computational way in Chap. 5, with reliance on the study of linear functions and
matrices in Chap. 4; is used in Chap. 8 to study inverse and implicit functions; and
appears again in a central role in the integral calculus of Chap. 9. Similarly, eigenvalues
are introduced in the two-dimensional case in Chap. 6, are used in applications of the
derivative in Chap. 8, and appear again in the study of invariant subspaces in Chap. 10.

Among the unusual features of the book are the use of column vectors for points
in R" to facilitate and simplify the development of matrix multiplication, the postpone-
ment of systems of linear equations to Chap. 7, the inclusion of a brief section on ex-
treme values of integrals (really an introduction to the calculus of variations), and a
section on the application of normal forms to systems of linear differential equations
with an introduction to the exponential of a matrix.

Numerous examples have been included in the text. These examples, which are
discussed in detail, illustrate either the application of an abstract result to a specific
case or a technique for handling a general class of problems. Exercises have been inter-
spersed throughout the text, frequently following examples. They form an integral
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PREFACE

part of the text and provide the student with an opportunity to test his comprehension
as soon as a new idea has been introduced and illustrated. Each exercise should be
solved in its entirety, at the time it appears in the text. Answers to all the exercises are
included in the book.

Each section closes with an extensive set of problems, which are a mixture of
computation and theory. Their purpose is to test the student’s understanding and
manipulative skills, as well as to introduce new ideas and applications. The problems
range in difficulty from straightforward computations to challenging theoretical ques-
tions. Answers and hints to the odd-numbered problems are also included in the book.
Problems marked with an asterisk are used or referred to in later sections.

Detailed proofs of all but a few deep theorems have been given. In the excep-
tional cases, such as the inverse-function theorem in Chap. 8, the theorems are dis-
cussed intuitively with examples, and references are supplied. The symbol HEE is
used to denote the end of a proof.

The first six chapters should be covered in their entirety. After completion of
Chap. 6, sections can be chosen to satisfy a variety of emphases. For example, one can
proceed directly from Chap. 6 to Chap. 10 if more linear algebra is desired, or one can
study parts of Chaps. 8 and 9 if more calculus is desired. Minimal transition material
will have to be supplied to maintain continuity of presentation. Thus the structure and
contents of the book allow flexibility in the formation of a one-year course, once a
background of necessary and important results has been built up. Our experience
indicates that about 23 three-hour weeks are needed to cover the first six chapters.

We are indebted to McGraw-Hill for the luxury of a preliminary edition, which
enabled us to class-test the material at Williams College for two years. Our students
provided substantial constructive criticisms and suggestions, which we have incor-
porated into this edition. Special thanks go to Eileen Sprague, who typed the major
part of both the preliminary edition and the final manuscript, and to Angie Giusti and
Miriam Grabois, who assisted in this task. We wish to thank all those who have pro-
vided encouragement and support throughout the preparation of the book.

GEORGE F. FEEMAN
NEIL R. GRABOIS
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1.1

In analytic geometry a rectangular or cartesian coordinate system is imposed on
the plane to study its geometry. This coordinate system involves two perpendicular
lines, called the axes of the coordinate system, on which units of distance are marked
off. Each point in the plane is assigned a pair of numbers which locate it relative to
these axes. The most significant feature of this coordinate system is that there is a one-
to-one correspondence between points in the plane and ordered pairs of numbers: to
each point there is assigned exactly one pair of numbers and vice versa. We begin with
a restatement of this idea and then introduce operations on number pairs which cor-
respond to geometric operations in the plane.

THE SPACE R?

It is assumed that the reader is familiar with the real numbers and with the basic
operations on these numbers. We denote the set of real numbers by R and sometimes
refer to real numbers as scalars.

R? is the collection of all ordered pairs of real numbers. A point in R? is a pair
of real numbers (;;) The numbers x, and x, are called the first and second coor-
dinates, respectively, of the point (:;) For reasons which will become clear in Chap.
4, we choose to write the coordinates in a column rather than in a row, as is normally
done in analytic geometry. For example, (:2,’), (_%), and (:/%) are points in R% The
word ordered means that attention must be given to the order in which the numbers are
written: (;;) = (Z;) if and only if x; = u; and x, = u,. The point (%) is different from

the point (g) The point (8) in R, with both coordinates zero, is denoted by O and is

called the zero point in R2 In general, we shall use capital letters such as X and Y to
denote points in R2.
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FIGURE 1 The point ("') and the vector (x' )
X2 X2

A point X = (;:) in R? may be pictured in a cartesian coordinate system by an
arrow which begins at the origin and has its head at the point with coordinates (g)
This arrow is called a vector. There is a one-to-one correspondence between points in
R? and vectors. We denote both the point and the vector by X (see Fig. 1).

Two important operations in R? are the addition of points and the multiplication
of a point by a real number. Let X = (x.) and Y = (y‘). The sum X + Y is defined to

2 2
be the point in R given by (x‘ + y‘). For example, let X = (%) and Y = (—i) Then
2

Xty

_(2+(=5))\_ (-3
X+Y_< 3+4 )‘( 7)
Addition can be viewed graphically as shown in Fig. 2. To add the vectors X and Y,

complete a parallelogram with X and Y as the sides; the vector X + Y is the diagonal
of the parallelogram, which begins at the zero point O (origin).

X, axis

Xty - ———= X+Y=(331)
Yoo —————

X2

+ P S P ——_,

o Y1 X Xty x, axis

FIGURE 2 Addition of vectors: ("' ) + (y-) = (x. 1 Y )
X2 Y2 X2 e
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X, axis

v X, axis
BY aX
X
O X, axis x, axis
(a)

FIGURE 3 Multiplication of vectors by scalars: (@) 0 < B < L, a>1; () X—Y=X+ (-1)Y.

EXERCISE
a. LetX= <§> and Y = (_é> Find X + Y and show the sum graphically.

b. Let x=($), Y=(_§), and z=(%). Show that (X +Y) +Z =X + (Y + Z).

Let X = ("1> and let « be any real number. The product aX is defined to be the

2

point in R? given by (g;;) For example, if X = <%> and a =5, then aX =5X =
<gg;) = (ig) Graphically, aX is a vector which lies along the line determined by
the vector X and which is magnified or contracted by |«| (see Fig. 3a). In particular,
if a =20, then aX = 0X = O, for any X in R Notice that the zeros in the last equation
are not the same; one is a real number, the other a point in R If a =—1, we let
(—1)X =—X. The vector —X is a vector in the direction opposite to X, and its coor-
dinates are the same as those of X except for sign.

This enables us to assign a meaning to the operation X — Y, namely, X — Y =
X + (=1)Y. For example,

(8-(-6=)-()

We may now form combinations such as aX + BY, where « and B are any real

numbers and X and Y are points in R% For example, let X = (%) andY = (_? ) Then

s (1) (5)-(4)
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X, axis

X, axis

FIGURE 4 The vector aX + BY.

A combination aX + BY is called a linear combination of the points X and Y. Graphi-
cally, aX + BY can be shown as in Fig. 4.

The set R? of ordered pairs of real numbers, together with the two operations of
addition and multiplication by a real number, forms the space R% Henceforth, we shall
use the word space to mean a set together with certain operations defined on its points.

EXERCISE

Let X = <‘21> and Y = (‘é)

a. Find 2X + 4Y and 3X — Y. Show each combination graphically.
b. Find =3X, Y+ (—=Y), X+ (=Y),and Y + (X —Y).

Having shown that linear combinations can be formed, we shall prove that any
point Z in R2 can be expressed as a linear combination of two nonzero points X and
Y such that Y # «aX for any scalar . Therefore such linear combinations completely

fill the space R>.
We shall work an example first and then prove the general result.

EXAMPLE 1.1
Let X= <%>, Y= <g> and Z = (187) Find real numbers « and B such that Z =
oX + BY.

Solution

et () =al3) +6(3) Toen ()

(20;_:_5:%) so that & and B8 must be the
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solutions of the system

a+58=17
20 +33=28

Solving for a and B, we get the unique solution a=—%%,
—% X + 2fY. The numbers a and B (in this case, —%* and 2¢)
of Z with respect to X and Y.

B = 2. Therefore Z =
are called coordinates

THEOREM 1.1
Let X and Y be two nonzero points in R? with Y # yX for any scalar vy. Let Z be any

point in R%. Then it is possible to find a unique pair of real numbers « and g such that
Z=aX + BY.

Proof
Let Z = (2), X= (;;) and Y = (gl) Then for Z to equal aX + BY, we must have
2
z; = ax; + By, and z, = ax, + By,. Solving for a and B, we get

_ Y& + Y12
X2Y1 — X1Y2

and

_ X2Z — %1%

Xy — Y
Since Y # yX, x,y; # x;y, and the denominator x,y; — x,y, is not equal to zero. There-
fore a and B are uniquely determined by the given equations. [ ] ]

The nonzero points X and Y are said to be collinear if Y = aX for some real
number a. Since O = 0X for any X, we say that the zero point is collinear with every
point. If X and Y are noncollinear points in R?> and Z = aX + BY, then « and B are
called the coordinates of Z with respect to X and Y.

Theorem 1.1 has a geometric interpretation. Let X and Y be noncollinear points
in R? and suppose that Z is any point in R% Construct the vectors X, Y, and Z as in
Fig. 5. At the head of the vector Z draw lines parallel to the vectors X and Y, respectively.
Then extend the vectors X and Y as necessary in order to complete a parallelogram.
The vector Z is then the sum of X and BY for some « and B. The numbers are unique
by construction because each vector on the line determined by a nonzero vector is a
unique multiple of that vector (see Prob. 17).

This theorem, which enables us to resolve any point Z in R* uniquely in terms
of any two nonzero points X and Y such that Y # yX, will be crucial to the develop-
ment in Chap. 3.
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X, axis

FIGURE 5 Resolution of the vector Z into the linear combination aX + BY.

Two observations are very much in order. First, the coordinates of a point Z
with respect to a pair of peints X and Y depend on the choice of X and Y. To illustrate

X _(17°
this, let Z = (.8 )

and Y = <g) therf @ = —4 and B8 = 3%, as in Example 1.1.

3
) ahd Y = (?) #en a =17 and B = 8, since <187) = 17<(1)> + 8(?)
)

and Y = (%), then « =9 and B8 =8, since (187> = 9((1)) + 8(% )

Once X and Y are specified in accordance with the hypothesis of Theorem 1.1, the
scalars @ and B are uniquely determined. Implicit in the theorem is the fact that the
lines determined by any two noncollinear vectors may serve as axes for a coordinate
system. We shall study the relationships among the coordinates of Z for different
choices of point pairs X and Y in Chap. 4.

The second observation concerns the significance of the uniqueness of « and 3.
Let X;, X,, and X; be three points in R? no two of which are collinear. Let X be a
fourth point in R?, chosen arbitrarily. Then, by Theorem 1.1, there exist unique pairs
of real numbers a;, a,, and B;, B, such that

X =, X; + X,
and
X3 = B:X; + B:X;

Let y be any nonzero real number. Then, by adding and subtracting yX; in the first
equation, we get

X =a;X; + X, — yX5 + vX;
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Substituting for X3, we obtain

X =, X; + a; Xy, — B X; — yB:X, + yX;
Hence

X = (s = yB1)Xi + (0 — ¥B:) X, + ¥X;

This shows that linear combinations of the three points X;, X,, and X; also completely
fill the space R%. But the coordinates are not uniquely determined since vy can be
any real number. This is illustrated by a specific example.

EXAMPLE 1.2

Let X, = (é), X, = (?), and X; = ({) No two of these points are collinear. Let
X = (xl). Then
X2

X =x,X; + %X,
and
Xs=X; + X,
For y any real number, we have
X=(x—y)X;+ (2 —y) Xy + ¥yX3
For instance, if y = 1, then

= (= DX;+ (s = DXy + X3

=@-1(§)+ @-v(})+(})
-(x)
If y=2, then

x=(m-2(3)+ @-2(7)+2(1)= (%)

Any other number substituted for y will give a different combination, so that the reso-
lution of X in terms of X;, X,, and X; is not unique.

PROBLEMS

1. Letx=(_g) and Y = ( g) Find 4X — 5Y and —2X + 7Y.

2. Find x; and x, if <%) <; ) ( )
3. Find x; and x; if <_x18) <3> < g)



X, axis
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FIGURE 6

4.

11.

12.

13.

14.
15.

16.

X, axis

A factory requires 10 tons of steel and 5 tons of coal per week. Represent this de-
mand by a point in R% Does it make sense to multiply this demand point by 2?2
How about by —12 Does it make sense to add the steel-coal demands of two fac-
tories? Of all factories?

. let X = (0), Y= (1) and Z = (4) Find « and B such that Z = aX + BY.

2 0 7

= 0

. Let X = <Z>, Y= ( 2), and Z = <0> Find a and B such that Z = aX + BY.

. letZ= (18) Find a and B such that Z = aX + BY for:

a. x=((1)) and Y=(‘1’) b. x=(})and y=(_‘1)).

. Let X, = <(1)) X, = (g) X, = (‘}) and X = (8).

a. Find a and B such that X = aX, + BX..
b. Find @ and B such that X3 = oX; + BX..
c. Find two different sets of coordinates «, 8, and y such that X = aX; + B8X, + vX;.

. Repeat Prob. 8 for X = (?)
. Let X, Y, and Z be three points in R2. Show graphically that (X +Y) +Z=

X+ (Y+2Z).

Let X and Y be points in R? such that X + Y = O. Show that X =—Y and that
Y=—X.

Let X and Y be vectors in the plane. Show that the heads of the vectors X + Y,
X +2Y, X + 3Y, and X — Y all lie on the same line.

Let the coordinates of Z with respect to X = (%) and Y = (i) be —1 and 5, re-
spectively. Find Z.

Let X be a nonzero point in R2 Show that if X = O, then a = 0.

Let @ be a nonzero real number. Show that if X is a point in R? such that aX = O,
then X = O.

For the vectors X, Y, and Z in Fig. 6, find the coordinates of Z with respect to X
and Y.



1.2: THE SPACE R" 9

1.23

17. Let .# be the line in the plane determined by the nonzero vector X. Show that
each vector on .# is a multiple of X and that each multiple of X is a vector on .%.

18. Let X and Y be noncollinear points in R2 Suppose that X + BY = O. Show that
a=pB=0.

19. Let X and Y be points in R? such that whenever aX 4+ B8Y = O both « and 8 must
be zero. Show that X and Y are noncollinear points.

20. Let X, and X, be noncollinear points in R2. Show that if

a X; + Xy = B, X; + B:X,
then

a; =By and ay =3,

21. Let X, = <§) X, = (?) X, = ((1)) and X = <‘§).

a. Find a and B such that X = aX, + BX;.
b. Find @ and B such that X; = aX, + BX;.
c. Find two sets of coordinates «, 8, and vy such that X = aX, + BX, + yX;.
22. Suppose Z = <_g> Find (trial and error permissible) a pair of nonzero points X

and Y in R? such that Z = 2X 4+ 3Y. Is this pair unique? If not, find a second pair.

23. Let X = (%) and Y = (g) Let Z= X+ a(Y — X), where « is any real number.

Show Z graphically for « =0, %, 3, §, and 1. Give a geometric description of Z for
any value of . Is it possible for Z to be the zero point O?

THE SPACE R"
The set R", where n is a positive integer, is the collection of all ordered n-tuples
of real numbers. A point X in R" is then a column of n real numbers | - x., - |, the word
%
ordered again meaning that two such columns are equal if and only if thél correspond-
ing real numbers are the same. For convenience, we shall frequently write (x;) for the

x

column ( N -), where x; stands for the ith coordinate of the point. Then (x;) = (y;)
Xn

if and only if x; =y;, fori=1. .., n. The zero point O in R" is the point with all

0
coordinates zero, namely, ( .
0

The set R! is the set of real numbers R with braces around each number. We
shall normally omit both the superscript and the braces in this case. The set R? was

X1
introduced in the previous section. R? is the collection of ordered triples | x, |. A point
X, X3

X =] x, | in R* may be pictured by a vector, using a 3-dimensional cartesian coordi-
X3



