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Foreword

The computer description of shape and the computer manipulation of shape is complex simply
because shape itself is complex. Of course, if the world of shape were limited to the Euclidean
shapes, there would be no such complexity. However, shape includes all the varieties of bio-
logical shapes: from the shapes of trees and their leaves to fish, animals, flowers, and plants —
and also natural shapes, such as those of coastlines, and of rocks and crystals.

Mathematical morphology is the mathematical study of shapes through a particular algebra
of operations, known as the Minkowski set operations. Here, a shape can be thought of in the
most general way possible, as a set of points in two or three dimensions. To fully understand
the nature of the algebra of mathematical morphology requires: (1) an understanding of what
an axiom system actually provides; (2) fluency in a variety of concepts associated with sets,
including the set builder notation in mathematics; and (3) fluency in the concepts of algebraic
structures. It is in this setting, formulated by Professor Deguchi, that the particulars of the
concepts of mathematical morphology can most fully be appreciated.

Mathematics of Shape Description is the first book to devote half of its pages, in a tu-
torial fashion, to the basic background and/or essential preliminary concepts that lead up to
the definitions of the mathematical morphological operators. This treatment of mathematical
morphology simultaneously handles the discrete and the continuous domains, and is based on
the mathematical morphology papers of Pijush Ghosh.

I knew Pijush Ghosh in the early 1990s, when he came to visit my laboratory at the University
of Washington. His knowledge and understanding of mathematical morphology operations and
what could be done with them, and what structures to use to implement continuous domain
morphology in a computer program, was thorough and complete. I learned a great deal from
him. He was a beautiful person, with a wonderful mind. He passed from this world prematurely,
at an early age, only a few years after he returned to India, and he is greatly missed.

Robert M. Haralick
Distinguished Professor of Computer Science
Graduate Center, The City University of New York



Preface

In this book, the coauthors have set out to provide a shape description scheme that is a notational
system for expressing the shapes of objects. This is also a way of writing the shape information
symbolically to avoid both ambiguity and obscurity, just as we use notation to express music
or electronic circuitry. We were interested in the algebraic structure hidden in the shapes, and
we wanted to answer the following question: “Even if we identify that a given set of objects
possesses an algebraic structure, how much is gained in practice from this discovery?” Of
course, we have come to know that the set of objects is closed under some algebraic composition
law, and that if it becomes possible to identify its set of generators, we may construct the whole
set from that subset. However, can we conceive of some “stronger” kind of structure than
this?

In this book, we take a morphological and set-theoretic approach to answering the above
question. Then, we show the capability of this approach for image processing and computer
graphics by presenting a simple shape model using two basic morphological and set-theoretic
shape operators, which are called Minkowski addition and decomposition. The mathematical
characteristics of these operators and their significance are explored in some detail, with the
aim of eventually arriving at a formal theory of shape description.

‘We start the book with the mathematical basis of sets and functions, and next review modern
algebra in general, thus highlighting the importance of the Minkowski operators. Then, on the
basis of these preparations, we set out to construct a systematic method for the representation
and analysis of shapes.

The first author, Pijush Ghosh, was a leading researcher in the area of Minkowski algebra
and its applications to shape analysis and related problems.

His idea was to answer a simple question: “Is it possible to do addition and subtraction
(or multiplication and division) with geometric shapes as we do in ordinary arithmetic with
numbers?” In other words, given a geometric shape, does its inverse — that is, its negative
shape — exist? If this were possible, then we might have obtained a remarkable insight into
analyzing and synthesizing shapes, just as we have in the case of numbers.

This notion still fascinates me. We discussed the central problem in the understanding of
shape, which can be compared with the analogous problem in number theory: “Given a positive
integer number n, are there integers k andl > 1 such thatn =k x [?” As is well known, this
question gave rise to one of the most fundamental concepts of number theory; namely, the
concept of prime numbers.

Analogously, there exist sets of points in the plane or space that cannot be expressed as
a Minkowski sum in any manner other than the most trivial one; that is, as the sum of a



xvi Preface

single point and the given set S itself — in other words, they cannot be decomposed further,
as a Minkowski sum of two simpler shapes. Such point sets may be termed morphologically
indecomposable shapes, or prime shapes.

Then, one may ask, what shape can be considered to be the “prime shape”?

Before he was able to solve this problem completely, Pijush K. Ghosh passed away in 1999,
at the age of 47, due to a brain tumor.

This book is a collaborative work between a mathematician, Pijush Ghosh, and an engineer-
ing researcher, Koichiro Deguchi. We first met in the early 1990s, at Professor Haralick’s labo-
ratory at the University of Washington, where we were both visiting researchers. In the course
of our discussions, it became clear that we both considered that image processing and com-
puter vision were vitally important fields of information science and technology. Researchers
in several areas of mathematics have contributed to the essential progress of these fields but,
unfortunately, the ties between engineering and mathematics are not sufficiently strong, even
in countries where image processing technologies have made considerable progress.

We decided to write a textbook to introduce a proper and well-defined algebra for image
processing problems, and we began work in 1997. Sadly, we lost Pijush Ghosh halfway through
our coauthorship, and his grand plan and our framework for the book were left in my hands.
It took several years for me to restart the process of compiling and shaping his ideas in order
to complete our task.

The first half of this book is my realization of Pijush’s original idea, whereas in the latter
half of the book I have reconstructed Pijush’s original research.

Pijush’s family, and many of his friends and colleagues, have given me great encouragement
throughout. I thank Professor Robert M. Haralick for his Foreword to this book. Dr. S.P. Mudur,
of the National Centre for Software Technology, India, very kindly provided me with Pijush’s
remaining manuscripts. The book would have been incomplete without the help of Pijush’s
former colleagues Dr. Vinod Kumar and Ms. Sandhya Desai; and his friends Professor Subir
Kumar Ghosh, of the Tata Institute of Fundamental Research, India, and Professor Kokichi
Sugihara, of the University of Tokyo, Japan, have also been very supportive. Students in my
laboratory at Tohoku University have also helped by proof-reading the book. I am most grateful
to all of them.

Koichiro Deguchi
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1

In Search of a Framework
for Shape Description

1.1 Shape Description: What It Means to Us

It is difficult to obtain a very precise meaning of shape. In the Oxford English Dictionary, the
meaning of the word “shape” is given as follows:

Shape — external form or contour; that quality of a material object (or geometrical figure) which de-
pends on constant relations of position and proportionate distance among all the points composing
its outline or its external surface.

The dictionary meaning of the word “description” is as follows:

Description — setting forth in words; reciting the characteristics of; more or less complete defini-
tion.

The dictionary meaning of “shape” emphasizes the fact that we human beings are aware
of shapes through outlines and surfaces of objects, both of which can be visually perceived.
On the other hand, shape does not take into account the color or texture of a surface. In
more technical terms, the shape of an object is: “Information about the geometrical aspects
of the surface of the object.” Shape description, therefore, involves specifying the informa-
tion through a scheme or a system. A shape description scheme is a notational system for
expressing the shapes of objects, a way of writing the shape information symbolically to
avoid both ambiguity and obscurity, just as we use notation to express music or electronic
circuitry.

It is well known that the discipline of shape description covers a very wide area, ranging
from geometry to physics, and also to many other branches of science. For example, consider
the task of describing the shape of a flat-faced solid cube. (a) A simple and direct scheme is
to describe the shape by means of its vertices, edges, and faces. A vertex can be represented
by a point (x;, y;, z;) in a coordinate space, an edge by its end-point vertices, and a face by

Mathematics of Shape Description  Pijush K. Ghosh and Koichiro Deguchi
© 2008 John Wiley & Sons (Asia) Pte Ltd



2 Mathematics of Shape Description
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Figure 1.1 Shape can be described in a variety of ways

its bounding edges (Figure 1.1(a)). (b) The same cube can be described as the shape swept
by a two-dimensional square cross-section when moved along a straight-line axis perpendic-
ular to the cross-section (Figure 1.1(b)). This description is less direct than the previous one.
(c) Sometimes, shape description may be more indirect. Consider the shape of a large sus-
pension structure such as a tent. Its shape can be more conveniently described by means of
the physical forces that act on various points of the tent (Figure 1.1(c)). The role of physical
forces in describing the shapes of natural objects such as clouds, crystals, or trees is well
known.

Such direct and indirect schemes are somewhat analogous to the enumerative and generative
schemes in mathematics. A direct scheme is like writing down or enumerating all the elements
of a set, such as

X=1{2,4,63810,...). (1.1)

An indirect scheme, on the other hand, is the specification of a set by defining a generating
function for its elements, such as

X = {x| x =2y for y € {Natural numbers} and y # 0}. (1.2)

Itis impossible for us to cover the whole range of shape description. We have decided to restrict
ourselves only to that part of shape description that is connected to geometry and other closely
related concepts. Thus modes of description such as those depicted in Figures 1.1(a) and (b)
fall within the scope of this book, but not modes such as shown in Figure 1.1(c).

We can be a little more precise in delineating the scope of the book. The shapes around us
can broadly be divided into two categories: (1) shapes of manufactured objects or potentially
manufactured objects (that is, well-designed objects); and (2) shapes of natural objects. The
reason for this subdivision is that the mathematical techniques that are very well suited for
description of the shapes of manufactured objects turn out to be inadequate for the shapes of
natural objects. It is obvious that, “clouds are not spheres, mountains are not cones, coastlines
are not circles, and bark is not smooth, nor does lightning travel in a straight line” [64]. Blum
[7] wrote, “Euclid goes from triangles to more complex rectilinear objects, polygons. The only
seriously considered nonpolygon is the circle. Where are the objects of biology? Where is the
kidney bean, the tadpole? Note that the latter wiggles and is not congruent with or similar
to even itself.” When attempts are made to describe them in terms of classical geometry and
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Figure 1.2 Shapes in crystals

mathematics, natural shapes turn out to be incredibly complex. Of course, there are some
exceptions. For example, in nature, some crystals possess very regular geometric shapes, as
shown in Figure 1.2.

But such exceptions are indeed very few in number. Thus if we restrict our domain to
classical geometry and related mathematical areas, we are, in effect, addressing the question of
shape description for manufactured objects. We, however, intend to discuss briefly the problems
of shape description for natural objects, primarily to bring out the contrast.

1.2 Pure versus Pragmatic Approaches

Even after limiting ourselves to the geometrical aspects of shape, we find that the study of
shape description starts from antiquity — from the geometry of Euclid or beyond, and extends
to the geometric modeling, morphing, or fractal geometry of recent times.

The discipline of geometry itself has evolved from mankind’s pursuit of describing and
measuring the shapes that are of immediate importance. The original motivation for geometry
was to describe and measure land and buildings (the word “geometry” comes from the Greek
ynguetoia, which means “earth-measuring”). The famous Rhind papyrus, a copy of which
has been preserved from the Hyksos epoch (about 1700 B.C.), testifies that at that time the
Egyptians, although empirically, were able to calculate the area of a plane figure or volume
of a solid. Even the early Greek mathematicians, such as Thales of Milet or Pythagoras of
Samos (6th century B.C.), were more interested in practical problems of surveying (means
of determining the boundary, size, position, etc.) and mensuration (means measuring). And,
as it often happens, a field of study that started with a motivation to solve immediate and
concrete practical problems transcended to a more abstract branch of science. It became far
more rigorous, but moved further away from concrete ideas. The chief contributor to this
transcendence is certainly Euclid. His work entitled Elements (ot xetar), written in Alexandria
in about 300 B.C., is still considered to be one of the most valuable scientific books of all time.
And then there is a long list of outstanding mathematicians — Descartes, Gauss, Lobachevski,
Bolyai, Riemann, Klein, and Hilbert, to mention a few — who have all contributed in an essential
way to the development of this branch of mathematics called geometry.

However, in recent times we have seen a revival of the trend toward solving immediate prac-
tical problems concerning shapes of objects. Because of the advent of the digital computer, it



