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Preface

When the Tyrian princess Dido landed on the North African shore of the
Mediterranean sea she was welcomed by a local chieftain. He offered her all
the land that she could enclose between the shoreline and a rope of knotted
cowhide. While the legend does not tell us, we may assume that Princess
Dido arrived at the correct solution by stretching the rope into the shape of
a circular arc and thereby maximized the area of the land upon which she
was to found Carthage. This story of the founding of Carthage is apocryphal.
Nonetheless it is probably the first account of a problemt of the kind that
inspired an entire mathematical discipline, the calculus of variations and its
extensions such as the theory of optimal control.

This book is intended to present an introductory treatment of the
calculus of variations in Part I and of optimal control theery in Part II. The
discussion in Part I is restricted to the simplest problem of the calculus of
variations. The topic is entirely classical; all of the basic theory had been
developed before the turn of the century. Consequently the material comes
from many sources; however, those most useful to me have been the books
of Oskar Bolza and of George M. Ewing. Part II is devoted to the
elementary aspects of the modern extension of the calculus of variations, the
theory of optimal control of dynamical systems. Here the approach is not
variational but rather geometric; it is based on a theory developed in
collaboration with Austin Blaquiére of the University of Paris.

This volume is the outgrowth of lecture notes for a course on the
variational calculus and optimal control which has been taught at the
University of California at Berkeley for over twenty years. Based on this
experience, I believe that a first-year graduate student in an engineering or
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vidi Preface

applied science curriculum should possess the requisite mathematical so-
phistication required for a reading of this text.

Over the years I have benefited greatly from fruitful discussions with
many colleagues and students, too numerous to list here; they know who
they are. However, two of them merit special mention. I am deeply grateful
to Martin Corless and to Wolfram Stadler for their critical reading of the
manuscript and for their constructive suggestions. I am also indebted to
David G. Luenberger, William E. Schmitendorf, and Thomas L. Vincent for
allowing me to quote from their work in Sections 13.12, 15.8, and 15.9 of
the book.

George Leitmann



Symbols and Notation

Standard mathematical symbols and notation are used in this book. The
most commonly used symbols are defined first. Thereafter we give the
definitions of the basic notation employed in tHe text.

Symbols

>

equals by definition; denotes

equals, is equivalent to

does not equal; is not equivalent to

equals identically; is the same as

does not equal identically; is not the same as
is less (greater) than or equal to

is less (greater) than

for all, for every

is an element (member) of; belongs to

is not an element (member) of ; does not belong to
empty set

is a subset of ; is contained in

contains

union

intersection

Cartesian product

|P}  setof all e having property P

R' set of real numbers; real line

[a,b] {xER'|asx=<b)
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xiv Symbols and Notation

(a,b) {xE€R'|a<x<b)
(a,b] {xER'|a<x=<b)
[a,b) ({xER'|a<x<b)
LN subtraction of sets; that is, A\ B == {eleEA, e B}
I absolute value
Il Euclidean norm
inf(sup)  infimum(supremum)
min(max) minimum(maximum)

sgn x signum; that is, for x€R', sgn x=1if x>0, sgn x=—1 if x<<0
T transpose (superscript)
Spaces

The set of all ordered n-tuples of real numbers is denoted by R"; that
18,
R'ER'XR'X ---XR'  (n times).

Thus, given an ordered n-tuple of real numbers, x,, x,,..., x,, we consider it
to be a vector x ER". We let all vectors be column vectors; that is,

=[xy x, - x, 1.

By endowing R" with the natural basis {e',e?,...,e"}, where e/ €R" and

. 1 ifi=)
iTei=§,. " :
o=y by {0 if i),

we assure that R" is a Euclidean space. In particular it follows that

n
xTx= Y x2=|x2.
i=1
The closure of a set XCR", denoted by X, is the set together with all of
its accumulation points; that is,
Ay

X XU {x|there is a sequence x, €X, i=1,2,...,

such that x, converges to x}.



Symbols and Notation xv
Functions

Given the nonempty sets X and Y,

f(-): XY

denotes a function (mapping) from the domain X into the range Y; that is,
associated with x € X there is one and only one y €Y. We write y=f(x), and
we term f(x) the value of the function at x.

The scalar-valued function f(-):[a, b]>R', [a, b]CR', a<b, is of class
C* if and only if it and its first k derivatives are continuous on [a, b]. Such a
function of class C' is also called smooth.

The scalar-valued function f(-):[a, b]>R', [a, b]CR', a<b, is piece-
wise continuous if and only if it is continuous on [a, b] with the exception of
a finite number of points of (a, b) where it possesses defined left and right
limits; that is, if f(-) is discontinuous at X €(a, b), then

f(x—0)= lim f(x)

and

f(x+0) = lim f(x)

are defined. In order to have f(x) defined for all x €[a, b], we take

f(a)=f(a+0),
f(b)=1(b-0),

and if f(-) is discontinuous at XxE(a, b) we take
f(x)=/(x-0)

or
f(x)=f(x+0).

The function f(-):[a, b]>R', [a, b]CR', a<b, is piecewise smooth if
and only if it is continuous and its first derivative is piecewise continuous on
[a, b]. If the first derivative is discontinuous at XE(a, b), then the point
(x, y)=(X, f(x)) is termed a corner of f(-).



xvi Symbols and Notation

The same notation is used for a vector-valued function f(-):[a, b]—
'R",[a,b]CR', a<b, provided the appropriate conditions are satisfied by its
components which are scalar-valued; for instance, f(-):[a, b]— R" is of
class C* if and only if the functions f(-):[a, b]—>R', i=1,2,..., n, are of
class C¥, where f(x) = [ f,(x) fu(x)-- £,

The function f(-): X— R', XCR™, is of class C* if and only if it and
its partial derivatives up to and including order k are continuous on X.

Given a function f(-): X— Y and ZCX, the restriction of f(-) to Z,
denoted by f(-)| 2, is the function f(-)| ;: Z— Y such that f(x)| =f(x) for
all xeZ.

Consider the function o(-):[a, b]->R", [a, b]CR', a<0, b>0, such
that

lim o) =

x-0 X

0.

Every function having this property is denoted by o(-).
T 1e function f(-):[a, b]>R", [a, b]CR', is convex if and only if, for
every x and y in [a, b] and for every a €[0, 1], we have

f(z)=af(y)+(1-a)f(x),
where
z=ay+(1—o)x.

Finally, given a function f(-): X— R!, XCR?", that is differentiable at
xE X, we let

|0 0 a T
)2 [ 222 249 )
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Part I

Calculus of Variations
1

Introduction

All of us “know” the answer to the question: What is the shape of the
shortest plane curve connecting two given points? Of course it is a straight
line. In mathematical terms one may pose this question as follows. Consider
the family of all piecewise smooth functions

y(+):[xg, x,] >R, Xo <Xy,
satisfying
Y(xo) =)o }’(xl) =)

where x, x,, y,, and y, are prescribed. Find a function »*(+) in the family
defined above that yields the curve of minimum length joining points
(xg, o) and (x,, y,). For given y(-), the length of the curve is

Lx‘[1+(@/dx)2]'/2dx (1.0

so that we seek y*(-) such that
fX'[l +(dy* /dx )] dxsfx'[l +(dy/dx)?]" dx (1.2)

for all y(-) in the class specified above.

A less trivial and considerably more difficult problem is that of
determining the thrust program which results in maximizing the flight
distance or range of a rocket plane in horizontal flight; see also Exercise 3.6

3
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YA

M' W

(Xg+%)

Figure 1.1. A curve connecting given points.

and Section 14.10. Let

t=time,

x=horizontal distance (range),

v=speed,

m=mass,

T=—cdm/dt=thrust, c=constant >0,
L=lift,

D=drag.

We assume that the lift, L, is adjusted to balance the weight, mg, g=

constant > 0, so that the rocket moves horizontally. We assume further that
the aerodynamic drag depends on the speed and lift as follows (Ref. 1.1):

D=Av*+BL?, A and B=constants>0.

Then the equations of motion of the rocket are

I
e

D=Av*+Bg’m?, (1.3

3
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Now, given the initial and terminal values of the speed v and mass m (and
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|
— )——T—»v

'

mg

f
1

49— x (horizontal)

Figure 1.2. Forces acting on a rocket.

hence of the fuel consumed), we wish to determine the thrust program— that
is, how T must be varied—in order to maximize the range x(7,)— x(0).
From (1.3) one obtains

o m
dx=— —E[dm+ ?dv]
so that the range is

x(1,) —x(0) = f 1+——]dm (1.4)

where m(0)=mg, m(t;)=m, <m,, v(0)=v, and v(t,)=v, are prescribed.
We may now restate the problem more simply; namely, determine the speed
v as a function of the mass m, salisfying the given end conditions and
maximizing the value of the integral (1.4). From (1.3) one then has

e cD
T=ef= ct+mdv/dm (15)

yielding the thrust program as a function of m and v, and thence of m.
These examples typify the simplest problems of the calculus of varia-
tions. In the next chapter we state such problems in a general way.
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