Computability

COMPUTABILITY

An introduction to recursive function theory

NIGEL CUTLAND

Department of Pure Mathematics, University of Hull

CAMBRIDGE UNIVERSITY PRESS

Cambridge
London New York New Rochelle

Melbourne Sydney

Published by the Press Syndicate of the University of Cambridge
The Pitt Building, Trumpington Street, Cambridge CB2 1RP

32 East 57th Street, New York, NY 10022, USA

296 Beaconsfield Parade, Middle Park, Melbourne 3206, Australia

© Cambridge University Press 1980
First published 1980

Printed in Great Britain by J. W. Arrowsmith Ltd., Bristol

Library of Congress Cataloguing in Publication Data

Cutland, Nigel.
Computability: an introduction to recursive function theory.

Bibliography: p.

Includes index.

1. Computable functions. 2. Recursion theory. I. Title.
QA9.59.C87 519.4 79-51823

ISBN 0 521 22384 9 hard covers
ISBN 0 521 29465 7 paperback

COMPUTABILITY

Preface

The emergence of the concept of a computable function over fifty years
ago marked the birth of a new branch of mathematics: its importance may
be judged from the fact that it has had applications and implications in
fields as diverse as computer science, philosophy and the foundations of
mathematics, as well as in many other areas of mathematics itself. This
book is designed to be an introduction to the basic ideas and results of
computability theory (or recursion theory, as it is traditionally known
among mathematicians).

The initial purpose of computability theory is to make precise the
intuitive idea of a computable function; that is, a function whose values
can be calculated in some kind of automatic or effective way. Thereby we
can gain a clearer understanding of this intuitive idea; and only thereby
can we begin to explore in a mathematical way the concept of compu-
tability as well as the many related ideas such as decidability and effective
enumerability. A rich theory then arises, having both positive and
negative aspects (here we are thinking of non-computability and undeci-
dability results), which it is the aim of this book to introduce.

We could describe computability theory, from the viewpoint of
computer science, as beginning with the question What can computers do
in principle (without restrictions of space, time or money)? — and, by
implication — What are their inherent theoretical limitations? Thus this
book is not about real computers and their hardware, nor is it about
programming languages and techniques. Nevertheless, our subject
matter is part of the theoretical background to the real world of
computers and their use, and should be of interest to the computing
community.

For the basic definition of computability we have used the ‘idealised
computer’ or register machine approach; we have found that this is readily
grasped by students, most of whom are aware of the idea of a computer.
(We do not, however, assume such an awareness (although it is helpful)

Preface ix

and even less do we assume any practical experience with computers or
calculators.) Our approach is mathematically equivalent to the many
others that have been discovered, including Turing machines, the
favourite of many. (We discuss these equivalences in chapter 3.)

This text grew out of a course given to undergraduates in mathematics
and computer science at the University of Hull. The reader envisaged is a
mathematics student with no prior knowledge of this subject, or a student
of computer science who may wish to supplement his practical expertise
with something of the theoretical background to his subject. We have
aimed at the second or third year undergraduate level, although the
earlier chapters covering the basic theory (chapters 1-7) should be within
the grasp of good students in sixth forms, high schools and colleges (and
their teachers). The only prerequisites are knowledge of the mathemati-
cal language of sets and functions (reviewed in the Prologue) and the
ability to follow a line of mathematical reasoning.

The later chapters (8-12) are largely independent of each other. Thus a
short introductory course could consist of chapters 1-7 supplemented by
selection according to taste from chapters 8-12. It has been our aim in
these later chapters to provide an introduction to some of the
ramifications and applications of basic computability theory, and thereby
provide a stepping stone towards more advanced study. To this end, the
final chapter contains a brief survey of possible directions for further
study, and some suggestions for further reading. (The two main texts that
might be regarded as natural sequels to this one are M. L. Minsky,
Computation: Finite and Infinite Machines, which would complement the
present volume by its broad and comprehensive study of computation (as
opposed to computability), and H. Rogers, Theory of Recursive Functions
and Effective Computability, which provides a more advanced treatment
of recursion theory in depth.)

Many people have helped towards the writing of this book. I would first
thank John Cleave, who taught me recursive function theory in a gradu-
ate course at the University of Bristol in 1966, and introduced me to the
register machine approach that I have used here. I have greatly appreci-
ated the sustained interest and encouragement from Stan Wainer (who
also made valuable suggestions for the material in chapters 10 and 12)
and David Jordan: I thank them. I would also like to thank David Jordan
and Dick Epstein for reading a draft of the manuscript and making many
valuable comments and corrections. I am grateful to the Cambridge
University Press for their interest and advice which has resulted in the
emergence of the completed manuscript.

Preface X

Finally, a big thank you to my wife Mary for her patience and
encouragement during the many phases of writing and preparation of this
book; her idealism and understanding have been a sustaining influence
throughout.

Contents

Preface

Prologue. Prerequisites and notation
~ 1 Sets

2 Functions

3 Relations and predicates

4 Logical notation

5 References

Computable functions

1 Algorithms, or effective procedures
2 The unlimited register machine

3 URM-computable functions

4 Decidable predicates and problems
5 Computability on other domains

Generating computable functions
1 The basic functions

2 Joining programs together

3 Substitution

4 Recursion

5 Minimalisation

Other approaches to computability: Church’s thesis

1 Other approaches to computability

2 Partial recursive functions (Godel-Kleene)
3 A digression: the primitive recursive functions

4 Turing-computability

5 Symbol manipulation systems of Post and Markov
6 Computability on domains other than N

7 Church’s thesis

Numbering computable functions

1 Numbering programs

2 Numbering computable functions
3 Discussion: the diagonal method
4 The s—-m-n theorem

10

11

12

Contents

Universal programs

1 Universal functions and universal programs
2 Two applications of the universal program

3 Effective operations on computable functions
Appendix. Computability of the function o,

Decidability, undecidability and partial decidability
1 Undecidable problems in computability

2 The word problem for groups

3 Diophantine equations

4 Sturm’s algorithm

5 Mathematical logic

6 Partially decidable predicates

Recursive and recursively enumerable sets
1 Recursive sets

2 Recursively enumerable sets

3 Productive and creative sets

4 Simple sets

Arithmetic and Godel’s incompleteness theorem
1 Formal arithmetic

2 Incompleteness

3 Godel’s incompleteness theorem

4 Undecidability

Reducibility and degrees

1 Many-one reducibility

2 Degrees

3 m-complete r.e. sets

4 Relative computability

5 Turing reducibility and Turing degrees

Effective operations on partial functions

1 The second Recursion theorem

2 Effective operations on computable functions

3 The first Recursion theorem

4 An application to the semantics of programming languages

The second Recursion theorem

1 The second Recursion theorem
2 Discussion

3 Myhill’s theorem

Complexity of computation

1 Complexity and complexity measures
2 The Speed-up theorem

3 Complexity classes

4 The elementary functions

vi

85
85
90
93
95

100
101
106
107
108
109
112

121
121
123
133
140

143
143
146
149
155

157
158
161
165
167
174

182
182
189
192
196

200
200
207
210

212
213
218
223
225

13

Contents

Further study
Bibliography
Index of notation
Subject Index

vii

236
239
241
246

Prologue
Prerequisites and notation

The only prerequisite to be able to read this book is familiarity with the
basic notations of sets and functions, and the basic ideas of mathematical
reasoning. Here we shall review these matters, and explain the notation
and terminology that we shall use. This is mostly standard; so for the
reader who prefers to move straight to chapter 1 and refer back to this
prologue only as necessary, we point out that we shall use the word
function to mean a partial function in general. We discuss this more fully
below.

1, Sets

Generally we shall use capital letters A, B, C, . . . to denote sets.
We write x € A to mean that x is a member of A, and we write x¢ A to
mean that x is not a member of A. The notation {x:...x...} where

.. x...Is some statement involving x means the set of all objects x for
which ... x...is true. Thus {x: x is an even natural number} is the set
{0,2,4,6,...}.

If A, B are sets, we write A = B to mean that A is contained in B (or A
is a subset of B); we use the notation A = B tomeanthat A< Bbut A # B
(i.e. A is a proper subset of B). The union of the sets A, B is the set
{x: x € A or x € B (or both)}, and is denoted by A U B the intersection of
A, B is the set {x: x€ A and xe€ B} and is denoted by A B. The
difference (or relative complement) of the sets A, B is the set {x: x€ A
and x¢ B} and is denoted by A \B.

The empty set is denoted by . We use the standard symbol N to
denote the set of natural numbers {0, 1, 2, 3, ... }. If A is a set of natural
numbers (i.e. A =N) we write A to denote the complement of A relative
to N, i.e. N\A. We write N* for the set of positive natural numbers
{1,2,3,...}, and as usual Z denotes the set of integers.

Prologue 2

We write (x, y) to denote the ordered pair of elements x and y; thus
(x, y) # (y, x) in general. If A, B are sets, the Cartesian product of A and B
is the set {(x, y): x € A and y € B}, and is denoted by A X B.

More generally, for elements xj,...,x, we write (xi,...,X,) to
denote the ordered n-tuple of x1, ..., x,; an n-tuple is often represented
by a single boldfaced symbol such as x. If A,,..., A, are sets we write
A;X...XA, for the set of n-tuples {(x1,...,%,): x1€A; and x,€
Aj...x,€A,} The product AX A X...XA (n times) is abbreviated by
A":; A' means A.

2. Functions

We assume familiarity with the basic idea of a function, and the
distinction between a function f and a particular value f(x) at any given x
where f is defined." If f is a function, the domain of f is the set {x: f(x) is
defined}, and is denoted Dom(f); we say that f(x) is undefined if
x€Dom(f). The set {f(x): x e Dom(f)} is called the range of f, and is
denoted by Ran(f). If A and B are sets we say that f is a function from A to
B if Dom(f) < A and Ran(f) = B. We use the notation f: A > B to mean
that f is a function from A to B with Dom(f) = A.

A function f is said to be injective if whenever x, y € Dom(f) and x # y,
then f(x) # f(y). If f is injective, then f~' denotes the inverse of f, i.e. the
unique function g such that Dom(g)=Ran(f) and g(f(x))=x for x €
Dom(f). A function f from A to B is surjective if Ran(f) = B.
and a surjection (from A to B) if it is surjective. It is a bijection if it is both
an injection and a surjection.

Suppose that f is a function and X is a set. The restriction of f to X,
denoted by f| X, is the function with domain X ~ Dom(f) whose value for
x € X nDom(f) is f(x). We write f(X) for Ran(f|X). If Y is a set, then
the inverse image of Y underfis the set f~'(Y) = {x: f(x) € Y}. (Note that
this is defined even when f is not injective.)

If £, g are functions, we say that g extends f if Dom(f) < Dom(g) and
f(x)=g(x) for all x e Dom(f): in short, f=g|Dom(f). This is written
fcs.

! Usually in mathematical texts a function f is defined to be a set of ordered pairs
such that if (x, y) € f and (x, z) € f, then y = z, and f(x) is defined to be this y. We
do not insist on this definition of a function, but our exposition is consistent with
it.

2 Functions 3

The composition of two functions f, g is the function whose domain is
the set {x: x e Dom(g) and g(x)e Dom(f)}, and whose value is f(g(x))
when defined. This function is denoted fog.

We denote by fg the function that is defined nowhere; i.e. fz has the
property that Dom(fp)=Ran(fz)= 3. Clearly fp=g|J for any
function g.

Often in computability we shall encounter functions, or expressions
involving functions, that are not always defined. In such situations the
following notation is very useful. Suppose that a(x) and B(x) are expres-
sions involving the variables x = (x1, . . . x,,). Then we write

a(x)=B(x)
to mean that for any x, the expressions a(x) and B(x) are either both
defined, or both undefined, and if defined they are equal. Thus, for
example, if f, g are functions, writing f(x) = g(x) is another way of saying
that f = g; and for any number y, f(x) =y means that f(x) is defined and
f(x)=y (since y is always defined).

Functions of natural numbers For most of this book we shall be
concerned with functions of natural numbers; that is, functions from N"
to N for various n, most commonly n =1 or 2.

A function f from N" to N is called an n-ary function. The value of f at
an n-tuple (xy,...,x,)€ Dom(f) is written f(x1,...,x,), or f(x), if x
represents (x1, . .., X,). In some texts the phrase partial function is used
to describe a function from N" to N whose domain is not necessarily the
whole of N". For us the word function means partial function. On
occasion we will, nevertheless, write partial function to emphasise this
fact. A total function from N" to N is a function whose domain is the whole
of N".

Particularly with number theoretic functions, we shall blur the dis-
tinction between a function and its particular values in two fairly standard
and unambiguous ways. First we shall allow a phrase such as ‘Let
f(x1,...x,) be afunction ...’ as a means of indicating that f is an n-ary
function. Second, we shall often describe a function in terms of its general
value when this is given by a formula. For instance, ‘the function x>’ means
‘the unary function f whose value at any xeN is x*’; similarly, ‘the
function x +y’ is the binary function whose value at (x, y)e N” is x +y.

We describe the zero function N- N by 0; and generally, for m € N, we
denote the function N- N whose value is always m by the boldface
symbol m.

Prologue 4

3. Relations and predicates
If A is a set, a property M (x4, . . ., x,) that holds (or is true) for

some n-tuples from A" and does not hold (or is false) for all other n-tuples
from A is called an n-ary relation or predicate on A2

For example, the property x <y is a binary relation (or predicate) on N;
2 <3 holds (or is true) whereas 9 < 5 does not hold (or is false). As another
example, any n-ary function f from N" to N gives rise to an (n +1)-ary
predicate M(x, y) given by

M(x1,...,%n y)if and onlyif f(xq,..., x,) =Y.

Equivalence relations and orders (The student unfamilar with these
notions may prefer to delay reading this paragraph until it is needed in
chapter 9.) In chapter 9 we shall encounter two special kinds of relations
on a set A.
(a) A binary relation R on a set A is called an equivalence relation if it
has the following properties for all x, y, z € A:

(i) (reflexivity) R(x, x);

(ii) (symmetry) if R(x, y) then R(y, x);

(iii) (transitivity) if R(x, y) and R(y, z) then R(x, z).
We think of R(x, y) as saying that x, y are equivalent (in some particular
sense). Then we define the equivalence class of x as the set {y: R(x, y)},
consisting of all things equivalent to x.
(b) A binary relation R on a set A is called a partial order if, for all
X, ¥, Z€EA,

(i) (irreflexivity) not R (x, x);

(ii) (transitivity) if R(x, y) and R(y, z) then R(x, z).
A partial order is usually denoted by the symbol <, and we write x <y
rather than <(x, y). A partial order is often defined by first defining <
(meaning < or =), with the properties

@) x=y;

(i) f x<yand y=x thenx=y;

(ili) =< is transitive;
and then defining x <y tomean x <y and x # y.

4. Logical notation
Our logical notation and usage will be standard throughout. We
use the word iff as an abbreviation for if and only if. The symbol =

% Often an n-ary relation or predicate M(x) on a set A is identified with the set
{x: x € A" and M(x) holds}. We do not insist on this identification here, although
our exposition is consistent with this approach.

4 Logical notation 5

denotes definitional equivalence, while = denotes implies, and &
denotes implies and is implied by. We use the symbols V, 3 to mean ‘for
all’ and ‘there exists’ in the standard way.

The symbol [is used in the text to indicate the end of a proof.

5. References
Each chapter is divided into sections, and items in each section

are numbered consecutively. A reference such as theorem 5-1.4 means
theorem 1.4 of chapter 5: this is the fourth numbered item of § 1 in that
chapter. When referring within a chapter the number of the chapter is
omitted. Exercises are included in this system of numbering. Thus
exercise 6-1.8(2) means the second exercise of exercises 1.8, found in
chapter 6.

Reference to entries in the bibliography is made by citing the author
and year of publication of the work referred to.

1
Computable functions

We begin this chapter with a discussion of the fundamental idea of an
algorithm or effective procedure. In subsequent sections we describe the
way in which this idea can be made precise using a kind of idealised
computer; this lays the foundation for a mathematical theory of compu-
tability and computable functions.

1. Algorithms, or effective procedures

When taught arithmetic in junior school we all learnt to add and
to multiply two numbers. We were not merely taught that any two
numbers have a sum and a product — we were given methods or rules for
finding sums and products. Such methods or rules are examples of
algorithms or effective procedures. Their implementation requires no
ingenuity or even intelligence beyond that needed to obey the teacher’s
instructions.

More generally, an algorithm or effective procedure is a mechanical
rule, or automatic method, or programme for performing some mathe-
matical operation. Some more examples of operations for which easy
algorithms can be given are

(1.1) (a) given n, finding the nth prime number,
(b) differentiating a polynomial,
(c) finding the highest common factor of two numbers (the
Euclidean algorithm),
(d) given two numbers x, y deciding whether x is a multiple of y.

Algorithms can be represented informally as shown in fig. la.
The input is the raw data or object on which the operation is to be
performed (e.g. a polynomial for (1.1) (b), a pair of numbers for (1.1) (¢)
and (d)) and the output is the result of the operation (e.g. for (1.1) (b), the
derived polynomial, and for (1.1) (d), the answer yes or no). The output is
produced mechanically by the black box — which could be thought of as a

