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AN ANALYSIS OF RESONANT SWITCH MODE POWER SUPPLIES

Jozef H. Hendriks
TERADYNE, Inc.
183 Essex St.
Boston, MA 02111 USA

Jozef H. Hendriks

ABSTRACT

Resonant-type power converters generate wave shapes which are
basically sinusoidal and exhibit all the advantages associated
with sine waves in practical applications. An analysis of the
single ended version of these resonant types of power converters
reveals characteristics that could make such converters quite

popular for domestic and industrial use.
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AN ANALYSIS OF RESONANT SWITCH MODE POWER SUPPLIES

Jozef H. Hendriks
TERADYNE, INC.
183 Essex St.
Boston, MA 02111 USA

Resonant type switch mode power supplies are not new. My first encounter
with such systems was in 1952, where the application was a 25kV supply with
low enough energy storage to permit safe beam current limiting in a 6cm
diameter TV projection tube. The switch was a single, class C driven, audio
penthode running at 450 kHz. (See fig.1l)

A similar circuit was used by the founding engineers of Teradyne in 1961 for
generating high test voltages for silicon rectifiers. (See fig. 2 ) The
power switch acted as a controllable current source in the on state and the
effective Q of the tank circuit modulated the operating frequency and the
conduction angles of the rectifying diodes in the voltage doubling circuit.
With an excellent reliability record; a push-pull version was built 10 years
later (10W at 2kV). Full wave voltage doubling was used to achieve slew rates
of 200V/ms and reduced output ripple.

In the early seventies, resonant mode switching found applications in P.S.
systems for aerospace, telecommunications, and inductive heating. Self
commutating of power SCR's was the primary reason and all the other advan-
tages have only recently been described. (See ref. 1-3)

These are: 1) lower performance switches
2) dimproved reliability
3) 1less EMI conduction and radiation

What do we mean by resonant mode?

A method of power conversion where the rate of energy exchange is determined
by at least one LC energy reservoir, the effective damping of which results
in a Q >1.

For such circuits to be stable, the energy injection has to be properly
timed, excess energy must be returned to the source and the stored dynamic
energy should be small compared to the static energy stored at the load port,
in order to achieve a good transient response.

Small displacement, high rpm engines in European cars makes them very attrac-

tive in dense traffic. This is a good analogy to clarify the previous
statement.
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A single active switch makes it possible to transfer energy in both the
flyback and the forward mode to lower either the output impedance, or to
permit a wide range of input source voltages. A corresponding improvement

of power factor will result when fed by full wave rectified AC with a minimum
of smoothing.

Non-ideal storage type transformers can be fully utilized to virtually
eliminate rectifier switching losses, and, by double tuning, will reduce
considerably, the ESR losses in capacitors, and core losses in transformers.
A 200kHz converter with power FETs is a recent example of brute force engine-
ering rarely meeting its goal. (See ref. 4)

A simple circuit which takes advantage of non-ideal components has been
described by Philips N.V. at PCI'80 in Munich. (See ref. 5 and fig. 3)

The objective of this paper is to derive closed form solutions for all design
variables and relate the operation of the converter to well known existing
circuits.

The inductor transformer is built with leakage inductances (k<1l) in order to
meet the following objectives:

1) to permit double tuning and to eliminate all switch
snubber networks

2) to control the short circuit current

3) to make shielding between primary and secondary
windings easier

As the output storage capacitor acts as a voltage source during its

charging interval, the widest conduction angle can be achieved if the primary
capacitor resonates with the leakage inductance at the third harmonic of the
fundamental frequency of L, and (C1+C2).

w2 = L - 32 9uwo2

LsCq Lo(C1+C2)

1)
L,= open circuit inductance

Lg= short circuit inductance

w = radial frequency

The equation for Wo is not exact, but accurate enough for k >0.8 and its
final expected tolerance. The relative error is p
P By 1-k2

Using the T equivalent circuit for a 1l:1 transformer and making C1=Cy=C, we
can derive:

e 3-2k2-k4
(continued...)
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ws

(...continued) = 3 and
wo

making

solving for k yields

3)
k = 0.87
wg
Maintaing Bg 3 with a practical k# 0.87 requires only a change of the
C1 :
-— ratio.
C2

A resonant circuit becomes aperiodic if Q = 0.5. If we want the nominal load
not to over damp the LC circuit:

Lo Ry, 4)
== &
2C 2

This assumes a constant output voltage (low ripple because of small conduc-

tion angles ( <60°) and sinusoidal driving voltages. With quasi sine waves

due to the non-linear damping effect of Ry, the reflected DC load before the
rectifier is closer to:

. 2
Rac ® =4 R 5)

Under short circuit (s.c.) conditions, the dominant frequency will be three
times the fundamental frequency and the output rectifiers will conduct with
a 180° conduction angle.

C
The s.c. current must be proportional to: I and Ui or
s
C1 6)
IS = an J-—L—S——

The open circuit secondary voltage Us, will be equal to the primary voltage
or:

(See fig. 4) Uy = -U; + Uy 7)

A

Ucy can be calculated from the energy equation:

A2 2 2
Loy = C1 Ugy + CoU2 8)

2 2 2
2E = C1Ug; + C2 (Uj + Ugy - 2U1Ugy)
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Solving for Ucp yields:
. C2 -C1 Ci+C2 . 28 [ %( g

C
With C; = Cp = C and enough energy supplied so that the term —E§ under
the root sign may be ignored:

. U1 = Lo
To=- = +11y7¢ 0

If S is being closed when I] goes through 0 and we wait long enough for Cp to
charge to -Uj via S and Ls we can write:

Il = To ton 11)
Combining 10) and 11) yields:
- ton 12)
U20 = Uy ( - 0.5)
Jorec
From 1), we define:
Ty = ZTTJZLOC 13)
and top = § Tg 14)
Now, - _ 15)
U20 = Ui (2'"'6 - 0.5)

As long a (27§ - 0.5) >1 & min. = 0.24, only half wave rectification takes
place and the circuit has properties similar to a flyback circuit, i.e.,:

a) Uy > Ui

b) high output impedance =Q Eﬁ?

c) energy used per cycle Pop * (To + top) must be stored
inLg first before it can be transferred

Major differences, however, are the finite values for -%%% and %ﬁ%
due to resonance, which in turn means lower dynamic losses in rectifiers.
Also, the switch S is operated when the energy flow through it is minimum

(either Ucy or Ij equals 0).
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The advantage of C2 is two fold:

~

a) it reduces Ugg and allows a lower BV limit of S

b) it splits I] in two equal parts (C] = C2) and reduces total
losses in (Cy + C2) due to their ESRs.

Once Uy <Uj, the circuit allows energy transfer in the forward mode as well.
While S is closed, part of I7 is diverted to the secondary circuit of
transformer T and its voltage source type sink Up, which clamps the
secondary voltage U2. (See fig. 5)

Hence: |U2 l <Uo

C2 is charged rapidly via S and Lg at a rate related to:

1
Ls C2

wg? = = (3wo)? 1)

The other part of I] can energize M and becomes available during the off
period of S to charge Cj, reverse charge C2, and to supply current to Ug.
The total amount of energy required:

= 2
Er > Poton + 2C2Up2+ % C1Ucy™ + Potoff 16)

Part of Et is available to resonant charge Up viaUcj and Lg. It increases I
and reduces Ucy by flattening its top due to the third harmonic wsg = 3wg-.
The remaining part will reduce I1 to zero or a finite negative value via D.
This mode of operation where Up = Uj permits more energy extraction out of Ui,
due to energy transfer to Up during both cycles t] and t2. (Compare 2 stroke
engines versus 4 stroke engines.)

The output impedance approaches a value equal to:

L
Zo > 14 >s 17)
C1

The circuit is sufficiently overdamped that the energy in Cp (=%C2U,2) is

not sufficient to return UCj to 0, i.e., S has to dissipate the energy left
in C1 (=%C1Uc12).

It is advantageous to use a slow device for S to reduce excessive current
spiking during that moment.

A third operation mode to be considered is when the output is short circuited,
which effectively eliminates C2. While S is closed, I1 will be primarily
limited by Ui, top, and the leakage inductance Ls; assuming its initial
value equals zero:

~ Uy

(See Fig. 6) 11 = -fg ton 18)
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When S opens (t7), this current I will resonant charge C1 to a voltage:

Uo = 11 §—F+=— 19)

combining 18) and 19) with Tg = 2ﬁ‘kscl

ields: U o
yrerdst Bl _ g B 41 20)
Ug Ts

C1 will subsequently discharge via the load circuit in_a resonant fashion,
i.e., I will be cosinusoidal until Ucy; = O and I1 = -I1. Thereafter, it
will rise linearly dr Ui , until it crosses zero.
(d_t=+i—)
s

If we leave S open, the cycle will repeat itself and, due to a finite Q of

the circuit, both Ug; and I; will exponentially decay at a rate determined

by the circuit Q (Q = mn where n is number of cycles where |Uc|= Uc ).
e

If we want to repeat the first cycle exactly, we close S again for the
duration of ton.

High output currents can be achieved this way at the expense of high
voltage swings across S and C} (equation 20 ).

It should be recognized that this mode of operation has been used in almost
every TV set to scan horizontally the electron beam of the picture CRT.

Lgs represents the deflection coil and the mutual inductance M is replaced

by the HV flyback transformer. The total cycle time is T = 60us with a

retrace time (S open) of 16%. This means that Ucy _ 6 and it explains why
Ui

HV transistors or SCRs are so important for 220V AC mains voltages. Due to a

misunderstanding about the proper operation of this resonant type switch

mode inverter, diode D is called "damper diode' in the English literature.

It must be obvious that this was a misnomer. To reduce Ucy, third harmonic

tuning was used in the HV transformer of some German designs (see ref.6) by

using a k< 0.9 coupling factor in the design of the HV transformer.

To summarize, the single ended resonant mode converter has the following
advantages:

1) most waveforms are sinusoidal reducing EMI

2) energy injection takes place at the most
advantageous moment (U = low, I is low)

3) it combines the flyback with the forward mode
of operation when U, < Uj.

4) it has inherent current limiting due to Lg

5) by selecting the proper turns ratio, Uo can be
properly matched to Ui

6) ''snubbing'" is integrated into the design

7) easier shielding due to lower k
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Disadvantages are:

1) optimization is more complex due to the fact
that the switching frequency must be related
to the resonance frequencies of the energy
transfer network
2) peak voltages and currents are high in relation
to Uin, Up, and Ip due to resonance phenomenae
3) core losses are difficult to relate to published
data because of the unsymmetrical exitation voltage
4) fixed frequency control narrows dynamic range of P,
at a particular Ug.

Controlling the energy flow:

As we have seen, it is vital to close S after UCl goes to zero or after a
fixed off time period of S, which ever comes first, and before D stops
conducting. (dIj , I1<0). A current sense transformer in series with
dt
D and S will sense both conditions. The on time period has to come from the
regulator circuit which senses P, (U, and or I,). This method is called
constant off time control and can be used on a cycle by cycle basis to
improve transient response.

Constant frequency with variable but limited duty cycle can also be used.
Ringing will occur during short circuit operations because the fixed switch-
ing frequency by definition does not itself adapt to the short circuit
frequency, i.e., S will close after a time Ts when Ucy *Uj. This simpler
method was used during the evaluation of the resonance mode technique by
using the NE 5561 control circuit (see fig. 8 tol1l2).

Applications:

One of the advantages of any switch mode type inverter is that reactive
"power" (VAR) does not have to be dissipated, as in a linear amplifier. Both
results are a consequence of Tellegen's theorem ( ZUg:Iz = 0). This means
that close to unity power factors can be realized in AC motor drives and

lamp ballasts. The resonant mode is particularly attractive for the latter
application due to its lower EMI and a magnetic structure which permits
separation of load and source which might improve heat sinking. Also, an
efficient "world lamp" (100 - 230V AC) is well within its capability. 1In
instrumentation, this type of converter is very attractive for floating
power sources. (See fig. 7)

There is also a huge replacement market for constant voltage ferro resonant
transformers. These machines utilize non-linear magnetics in conjunction
with a fixed frequency. A resonant mode converter accomplishes the same by
using linear magnetics with a variable frequency which, due to its magnitude
considerably reduces weight for a given output power (1 kW/kg).
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