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Logarithmic Forms and Diophantine Geometry

There is now much interplay between studies on logarithmic forms and deep aspects of
arithmetic algebraic geometry. New light has been shed, for instance, on the famous
conjectures of Tate and Shafarevich relating to abelian varieties and the associated
celebrated discoveries of Faltings establishing the Mordell conjecture. This book gives
an account of the theory of linear forms in the logarithms of algebraic numbers with
special emphasis on the important developments of the past twenty-five years. The first
part concentrates on basic material in transcendental number theory but with a modern
perspective including discussion of the Mahler—Manin conjecture, of the Riemann
hypothesis over finite fields, of significant new studies on the effective solution of
Diophantine problems and of the abc-conjecture. The remainder assumes some
background in Lie algebras and group varieties and it covers, in certain instances for
the first time in book form, more advanced topics including the work of Masser and
Wiistholz on zero estimates on group varieties (derived by a new, more algebraic
approach that involves Hilbert functions and Poincaré series), the analytic subgroup
theorem and its principal applications; these areas reflect substantial original research.
The final chapter summarises other aspects of Diophantine geometry including
hypergeometric theory and the André-Qort conjecture. A comprehensive bibliography
rounds off this definitive survey of effective methods in Diophantine geometry.

ALAN BAKER, FRS, is Emeritus Professor of Pure Mathematics in the University of
Cambridge and Fellow of Trinity College, Cambridge. He has received numerous
international awards, including, in 1970, a Fields medal for his work in number theory.
This is his third authored book: he has edited three others for publication.
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Preface

This book has arisen from lectures given by the first author at ETH
Ziirich in the Wintersemester 19881989 under the Nachdiplomvor-
lesung program and subsequent lectures by both authors in various
localities, in particular at an instructional conference organised by the
DMV in Blaubeuren. Our object has been to give an account of the the-
ory of linear forms in the logarithms of algebraic numbers with special
emphasis on the important developments of the past twenty-five years
concerning multiplicity estimates on group varieties.

As will be clear from the text there is now much interplay between
studies on logarithmic forms and deep aspects of arithmetic algebraic
geometry. New light has been shed for instance on the famous con-
jectures of Tate and Shafarevich relating to abelian varieties and the
associated celebrated discoveries of Faltings establishing the Mordell
conjecture. We give a connected exposition reflecting these major
advances including the first version in book form of the basic works
of Masser and Wiistholz on zero estimates on group varieties, the ana-
lytic subgroup theorem and their applications. Our discussion here is
more algebraic in character than the original and involves, in particular,
Hilbert functions in degree theory and Poincaré series as well as the
general background of Lie algebras and group varieties. On the other
hand, the first three chapters have been written on a more basic level in
the style of Baker [25]; since its publication in 1975, the latter has been
the classical introduction to transcendence theory, and especially to the
subject of logarithmic forms, and it may still be regarded as the standard



X Preface

work in this field. The text here gives in essence a new rendering and
updating of Chapters 1 to 5 of [25].

We are most grateful to Camilla Grob for her unstinting help in taking
down our lecture notes with a view to publication and to S. Gerig, E Yan
and O. Fasching for their generous assistance in connection with the
detailed preparation of the text, in particular with the IBIEX typesetting.
We are much indebted to Professor D. W. Masser for reading through a
draft of the book prior to publication and for making many detailed and
helpful suggestions. Further we thank Professor P. Cohen for reviewing
aspects of the book, in particular in connection with Chapter 8. Finally
we acknowledge with gratitude the generous support of the Forschungs-
institut at ETH in arranging a variety of visits so that we could complete
our work.

A. Baker and G. Wiistholz (Cambridge and Ziirich)
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Transcendence origins

1.1 Liouville’s theorem

In 1844 Liouville showed for the first time the existence of
transcendental numbers, that is numbers which are not algebraic and
so are not roots of any polynomial with integer coefficients [147]. The
following approximation theorem by Liouville allowed a certain type of
number to be established as transcendental.

Theorem 1.1 (Liouville) If« is an algebraic number with degree n > 1
then, for all rationals p/q (p, q € Z, g > 0), we have

for some constant ¢ = c(a) > 0 (that is, c is only dependent on «).

Proof. Let P(x) be the minimal polynomial for « (that is the irreducible
polynomial P with P(«a) =0, with the coefficients of P integers, with
the leading coefficient positive and with the greatest common divisor
of the coefficients equal to 1). We can assume that o is real and that
e —p/q| < 1, for otherwise the theorem is trivially valid. By the mean
value theorem we have P(a) — P(p/q) = (e — p/q)P’ () for some &
between o and p/g. Then & belongs to (¢ — 1, + 1) and therefore
‘P’(‘g")] < 1/c for some ¢ =c(a) > 0. Since P(x) =0 we get




2 Transcendence origins

Since P is irreducible of degree n, P(p/q) # 0 and |¢"P(p/q)| is an
integer, whence |P(p/q)| > 1/4" and the theorem follows. ]

Now let us look at some numbers for which this theorem provides a
proof of their transcendence.

Example 1.2 The number

oo
g% 10
n=1

is transcendental.

Forletpy = 108 % _ 107" and ¢4 = 10% fork = 1,2, ... ; then py,

n=1
qy. are relatively prime rational integers and

o0 o0
2] 5 a0 < e S 0
L4 v

10—+ _ i

—9‘1k k

Since k tends to infinity there cannot exist a constant ¢, as in the the-
orem, only depending on &. Therefore & is transcendental. Further, as
immediate consequences of Liouville’s theorem, we have the following.

Example 1.3 Any non-terminating decimal of the type
0.a10---0a0---0a30-- -,

in which blocks of zeros increase in length sufficiently rapidly, is
transcendental. Similarly any continued fraction in which the partial
quotients increase sufficiently rapidly is transcendental.

In 1906 Maillet published the first book on transcendental numbers
[159]. He showed here, amongst other things, that there exist tran-
scendental numbers whose continued fractions have bounded partial
quotients.

Example 1.4 Continued fractions of the type

Dt e e d R o bt B i 5 e L ]
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are transcendental, where a; # 1 and the number of repeated partial
quotients increases sufficiently rapidly.

The subject of continued fractions of Maillet type was taken up by
Baker [11] and it continues to be of research interest (see e.g. [180]).
Maillet’s proof was based on an approximation theorem with quadratic
irrationals. In 1961, Giiting [122] obtained an elegant theorem of this
kind relating to numbers of arbitrary degree. In order to state the result
we need the concept of the height of an algebraic number; in fact some
notion of height occurs throughout our text. Let « be an algebraic number
and let the minimal polynomial for o be

P(x) =ap +aix 1+ --- +a,.
Definition 1.5 The (classical) height of « is given by
H (o) = max(laol, .. ., lanl).

Now let & and B be distinct algebraic numbers with heights a and b,
and let /, m be the degrees of 8 over Q(«) and « over QQ(f8) respectively.
Then Giiting’s theorem reads as follows.

Theorem 1.6 We have
lo.— Bl 3ai b

Here we are using Vinogradov’s notation: by f >> g for functions f,
g we mean f > cg for some positive constant ¢ and similarly by f < g
we mean f < cg. The constant ¢ in Theorem 1.6 is effective and for an
explicit expression in terms of / and m see [122].

Proof of Theorem 1.6. Giiting’s argument is essentially a straightfor-
ward generalisation of Liouville’s. It depends on the fact that

lab bP N (@ — B)| = 1,

where a( and b are the leading coefficients in the minimal polynomials
for o and B, and N denotes the field norm with respect to Q(a, B).
The field conjugates «; — B; of @« — B have absolute value at most
(I +|e[)(1 + |B;|) and estimates for aé]_[(l + loj]) and B TT(1 + 18]
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in terms of the heights @ and b, where the products are taken over all
field conjugates, date back to Landau; see [33, §2]. In fact Theorem
4.2 of LeVeque’s book [145] shows that the expressions are at most
6"a' and 6"b™ respectively where n denotes the degree of Q(a, 8) and
Theorem 1.6 follows. O

A much deeper result in the context of Liouville’s theorem was dis-
covered by Thue [243] in 1909 and Thue’s work was subsequently
developed in important papers by Siegel [226], Schneider [212],
Dyson [81], Gelfond [108] and Roth [204]. Let o be an algebraic number
with degree n > 1 and consider the inequality

for c=c(a, 2¢) > 0 and p, q rational integers. Then Thue showed that
c(a, ») exists for s > %n + 1. The result was sharpened by Siegel to
»x>s+n/(s + 1) for any positive integer s, in particular to » > 2./n,
and this was further improved by Dyson and Gelfond independently
to x> /2n. Finally Roth showed that there exists c(«, ) >0 for
any » > 2 and, by continued fraction theory for example, this is best
possible.

Theorem 1.7 (Thue-Siegel-Roth) If 3 >2 then there exists
c(a, »2) > 0 such that the above inequality holds for all rationals p/q
(g>0).

Thue was motivated by studies on Diophantine equations and one of
the main applications of his result was a demonstration of the finite-
ness of the number of solutions of the equation F(x,y) = m where
F' is an irreducible binary form with integer coefficients and degree at
least 3 (see Section 3.3). Siegel’s sharpening led to his famous theo-
rem that there are only finitely many integer points on any algebraic
curve of genus at least 1. The works of Thue and Siegel were based
on the construction of a polynomial in two variables by means of the
box principle and they yielded an estimate for the number of solutions
to the equations in question. But they did not furnish an estimate for
the sizes of the solutions and so they did not enable one to actually
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solve the equations. The reason lay in the ineffectiveness of the con-
stant ¢ in Theorem 1.7 and its earlier versions subsequent to that of
Liouville; it arises from a purely hypothetical assumption at the begin-
ning of the proof that @ has at least one good approximation p/q with
large g. The first effective improvement on Liouville’s theorem for
some particular algebraic numbers was obtained by Baker [12] using a
method involving hypergeometric functions. As an example he showed
[13] that

1
I ’—" 098t
q q2.955

This immediately yields a bound in terms of m for all integer solutions
of the Diophantine equation x*> — 2y® = m and indeed it enables one to
solve the equation completely for any reasonably sized m. Many other
examples of this type relating to approximation to fractional powers of
rationals can be given; see especially [69]. However, it was not until
Baker’s development of the theory of linear forms in the logarithms
of algebraic numbers [15] that one was able to give the first general
effective improvement on Liouville’s theorem. The latter theory and its
ramifications will be the main theme of this book.

Before closing this section it should be mentioned that Bombieri
[47] (see also the discussion in [48]) has recently succeeded in obtain-
ing an alternative approach to questions on effective improvements on
Liouville’s theorem. His work is based on the original Thue—Siegel tech-
nique and surprisingly he shows that this can be made effective. But the
method based on the theory of logarithmic forms would seem at present
to be stronger.

1.2 The Hermite-Lindemann theorem

In 1873 Hermite [127] proved that e is transcendental. His proof was
based on Padé approximants to €%, ..., ¢"*. Lindemann [146] extended
Hermite’s method to e¢*'*, ..., e and showed thereby in 1882 that
7 is transcendental (see Section 6.3 for further historical details). In
fact Lindemann proved a much more general result which includes the
transcendence of e and  as special cases.
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Theorem 1.8 Whenever ay, . . .,y are distinct algebraic numbers and
Bos . . . , Bn are non-zero algebraic numbers we have

Boe®® + -+ + Ppe™ # 0.

Plainly the transcendence of e follows on taking o; = j and the B
as integers or simply on takingn = 1, 9 = 0,1 = 1 and g1 = —1.
Further, the transcendence of 7 follows from Euler’s equation ¢’ = —1.
It is also readily seen that Theorem 1.8 implies the transcendence of e*
and log o for algebraic ¢ # 0, 1, and also the transcendence of the
trigonometric functions cos «, sin @ and tan « for algebraic o # 0.

Proof of Theorem 1.8. A proof of the theorem is given in [25, Ch. 1, §3].
We shall not repeat the details here but shall give instead a demonstration
of the transcendence of 7 following the same method.

Accordingly suppose that 7 is algebraic. On defining ¥ = im and
using Euler’s identity ¢ = —1 we get ¢’ = —1 whence

@ +1)--- (% +1) =0,

where ¥, . . ., ¥4 denote the conjugates of . On expanding the left-hand
side we obtain a sum of 2¢ terms ¢©, where

O=¢et+ - +eq04

and ¢ = 0 or 1; we suppose that precisely n of the numbers ® are
non-zero and we denote these by a1, . . ., a,. We have then

bo+ b1e* + --- + bye®r =0,

where b is the positive integer 24 _n, where by = --- = b, = 1 and
af,...,oa, are algebraic numbers such that Q(«y,...,a,) is a Galois
field, thatis oy, . . . , v, can be written as complete sets of conjugates. We
proceed to show that the equation is impossible; indeed we shall prove
this under the more general assumption that the b are arbitrary integers
such that for each complete set of conjugates ay,, ..., ax, the corre-
sponding by, , . .., by, are equal. The latter assumption and the Galois
condition hold trivially on taking o; = j and so our result will then

include the transcendence of e.
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We define
!
1) = / ¢ (u) d,
0

where f(x) = "PxP—l(x — a1)? - -- (x — &n)P; here p denotes a large

prime and / is any positive integer such that [, . . ., [, are algebraic
integers. Now by iteration of partial integration we get

m m
Iay='¢ Y FO0) <Dy,
j=0 j=0
where m = (n + 1)p — 1 and f (7 is the jth derivative of . Let f be the

polynomial obtained from f by replacing each coefficient of f with its
absolute value; then

@) < lrle"f(nl).
We shall compare estimates for
J=bil(ay) + -+ bl ().

By the exponential equation and the expression for /(¢) above we have

n m n m
J=2 be™ Y fP0) - by )
k=1 j=0 k=1 " j=0
=—bo Y fP0) = >3 bef D).
j=0 Jj=0 k=1

Now we know by our Galois assumption that J remains fixed under
the automorphisms of @ (algebraic closure of Q) and is therefore a
rational integer (note that the coefficients of f are symmetric in the ).
By the definition of f we have f( () = 0 for j < p and £ (0) = 0
forj < p—1and

FEDO) = (D" (p— D! ("ay -+ ).



