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PREFACE

Discrete mathematics has become a popular introductory course for students
contemplating the study of either computer science or mathematics.

As a topic in mathematics, discrete mathematics presents a convenient
introduction to the techniques of proof and the process of logical reasoning
but allows the student to focus attention on concepts which are relatively
couicrete, as opposed to some of the ideas in the calculus. As a topic for com-
puter science, it provides much of the mathematical foundation for the later
study of theoretical topics as well as a foundation for many of the more con-
crete ideas. Thus, the topics in discrete mathematics present the opportunity
for many illustrative examples.

Students of mathematics should see some of the applications of mathe-
matics in other disciplines, and computer science students need to see the
mathematical foundations of their discipline from the beginnings of their
study.

This book stresses two themes. The first is the application of the topics to
computer science. In particular, whenever feasible, algorithms are included to
accomplish the processes that are being described. The second is an intro-
duction to the methods of theoretical mathematics. The mathematical topics
covered stress the development of concepts and the process of proof.

There is a reason for my choice of this particular title, Discrete Mathe-
matics: A Unified Approach. Although a strong relationship exists between
most of the topics in discrete mathematics, in attempting to make their texts as
flexible as possible, too many authors present the ideas as a compendium of
separate ideas which have no relationship to each other. The selection of
topics and order of presentation in this book is designed to allow for a more
unified presentation of the material. It is possible to use the material in this
book in a different order, but I feel that the present order provides the student
with the best sense of unity.

Ample material is given here for a two-semester or three-quarter course in
discrete mathematics. At Norwich we have covered Chapters 1, 2, 4, 5, and
parts of 6 in the first semester, and the remainder of Chapter 6 and
Chapters 7, 8, and 9 in the second semester. Chapter 3 is covered in another

ix



PREFACE

course but could be used in either semester. Chapter 4 can be omitted if the
students are already familiar with matrix arithmetic.
Suggested course organizations:

One semester (stressing Graph Theory): Chapters 1, 2, 4 (if needed), and 5,
and Sections 6.1 to 6.5.

One semester (stressing Theory of Computation): Chapter 1; Sections 2.1
to 2.5, 5.1to0 5.4, 6.1, 6.2, 6.6, 6.9, and 7.1 to 7.4; and Chapters 8 and 9.

Two semesters: First semester, Chapters 1 to 5; second semester, Chap-
ters 6 to 9.

Brief Description of Chapters

Chapter 1: An introduction to the ideas of mathematical logic. This chapter
lays the foundation for the techniques of proof used in the later chapters. It
provides an introduction to predicate logic and mathematical induction. The
presentation of mathematical induction is based on predicate logic.

Chapter 2: An introduction to mathematical set theory and combinatorial
analysis. The combinatorial analysis is presented at a relatively low level and
is used in the discussion of algorithm analysis later in the text.

Chapter 3: A brief introduction to boolean algebra. On the basis of simi-

- larities already observed between logic and set theory, the concept of a

boolean algebra as a mathematical abstraction is introduced. The chapter
begins with a discussion of logic circuits. This chapter is independent of those
that follow, and can be used at any time after Chapter 2, or it may be omitted
altogether.

Chapter 4: A brief introduction to matrix arithmetic. The barest essentials of
matrix addition, scalar multiplication, and matrix multiplication are described
for the student who has not encountered these topics before. They are needed
in order to make use of the matrix algorithms in graph theory in the following
chapter. Students who have already been introduced to matrices can skip this
chapter.

Chapter 5: The theory of undirected graphs. This chapter and Chapter 6 form
the heart of my discrete mathematics course. Chapter 5 presents the terminol-
ogy and algorithms needed for the applications of graph theory to computer
science. Several of the classic ideas, such as connectivity, chromatic number,
and planarity are discussed.

Chapter 6: The theory of directed graphs. The ideas of undirected graphs are
extended to that of graphs in which the edges have a specified direction. Dis-
cussion of applications of graphs to computer science and other areas is
included, as well as the important algorithms of Dijkstra and Warshall.
Directed (rooted) trees are presented in this chapter as a special case of the
directed graph.



Chapter 7: An introduction to finite automatons and formal languages as
described by them. The state diagrams of finite automatons are used to illus-
trate another example of the use of directed graphs. The famous syntax dia-
grams of Pascal are discussed as an example of the finite automaton.

Chapter 8: An introduction to Turing machines. Pushdown automata are
briefly discussed as an extension of the finite automaton, and these ideas are
extended to the Turing machine. A brief discussion of Church’s thesis is
included.

Chapter 9: The culmination of the book is a discussion of the pumping
lemmas and Turing’s halting problem. These theorems enable us to put most
of the ideas in the book together to illustrate their use in producing some
significant results.

The last three chapters are written at a level which is accessible to freshmen
and sophomores, and as a consequence some of the mathematical details have
been left out in some cases.
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CHAPTER

Mathematical Logic
and Proofs

1.1 WHAT IS A PROOF?

The Basic Problem

In mathematics and computer science, as well as in many places in everyday
life, we face the problem of determining whether something is true. Often the
decision is easy. If we were to say that 2 + 2 =5, most people, no doubt,
would immediately say that the statement was not true. (Actually, the more
likely response would be, “ What kind of dummy would think that?” or some-
thing even more insulting.) If we were to say 2 + 2 = 4, then undoubtedly the
response would be, “ Of course” or “Everybody knows that.” However, many
statements are not so clear. A statement such as “The sum of the first n odd
integers is equal to n%” in addition to meeting with a good deal of conster-
nation, might be greeted with a response of “Is that really true?” or “Why?”
This natural response lies behind one of the most important concepts of math-
ematics, that of proof. In this chapter we explore the ideas of mathematical
logic which lie behind the concept of proof.

If a statement is obviously true or false, we usually don’t worry too much
about proof or disproof (although some of the most difficult problems in
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mathematics are those whose truth may seem obvious). But for those state-
ments whose truth is unknown, it is useful to be able to determine exactly
what the situation is. Many people find that the process of discovering a proof
is more interesting than the statement being proved. The well-known pythago-
rean theorem of geometry has been known to be true for thousands of years,
but hundreds of proofs have been found for it, and even today people enjoy
attempting to find new proofs of this theorem. The people who find these
proofs are not concerned about whether the statement is true; they are really
interested in why it is true.

This interest in the reasons why statements are true or false is one of
the things that makes mathematics fascinating. The mathematician is often
concerned not only with what is true but also with why things are true.

As we proceed through this book, we will encounter many statements
about mathematics and computer science which will require proof or disproof.
With a solid grounding in mathematical logic, we should be able to proceed
with some degree of confidence. One warning should be given though. Some
things which are “obviously true” are not so obvious when we try to prove
them—in fact, some turn out to be false! One of the more bizarre facts of logic
tells us that it is even possible that some statements could be true but impossi-
ble to prove from the current axioms of mathematics.

In computer science, as in mathematics, it is crucial to know what we are
doing is correct. In algorithm analysis, for example, we are concerned with
knowing that the algorithm does what it is supposed to do and that it does its
job efficiently. To correctly address those issues, it is often necessary to use the
formalism that mathematics can provide in order to verify that the statements
we wish to make about the algorithms in question are correct.

Many mathematical structures are used in computer science. These struc-
tures are often best described in terms of the formal theory of mathematics,
and in this context proofs play a very important role. Graph theory, for
example, provides the foundation for many ideas in @m and it
forms the basis for some of the theoretical models of a computer which are
useful in understanding how computers are able or unable to perform certain
tasks.

Some Examples

To begin considering the ideas of mathematical logic and proofs, we look at a
few examples of reasoning, some of which represent valid reasoning and others
which do not. As we proceed through the chapter, we will be able to discern
for certain which arguments are valid and which are not.

EXAMPLE 1.1

Consider the following argument:

If computers are to really find their way into the home of the average person,
then the price of some complete systems should be less than $1000. The local



computer store has complete systems priced under $1000, so it must follow 3

. . ]
that computers have found their way into the average home. [ ] RN

PROOF?

We need to ask whether the argument convinces us that the conclusion is
justified by the evidence. If the conclusion does “follow logically,” then we say
that the argument proves that the conclusion is indeed true. Sometimes we find
that the conclusion is true even when the argument is not “logical.”

EXAMPLE 1.2

If computers are to find their way into the home of the average person, then
the price of some complete systems should be less than $1000. Computers are
found in the homes of average people, thus we must conclude that there are

complete computer systems which are priced under $1000. [ ]
EXAMPLE 1.3
All computers have input devices. The Macintosh is a computer. Thus the
Macintosh has an input device. [ |
EXAMPLE 1.4

All Apple computers can be connected to printing devices. All minicomputers
can be connected to printing devices. Thus, some Apple computers are mini-
computers. [ ]

In an argument, the statements used to build the conclusion are called the
_premises,-and the final statement is called the conclusion. We regard an argu-
ment as being valid provided that whenever all the premises are true, the con-
clusion is guaranteed to be true.

E A couple of important facts need to be recognized. First, a valid argument
in which some of the premises are false may or may not produce a valid con-
clusion, second an invalid argument (one that is not valid) can produce a true
conclusion. In the second case, the arriving at a true conclusion is more a
chance happening than anything else.

In the problems for this section, we ask you to consider some arguments
and decide whether you think they are valid. There obviously cannot be right
or wrong answers at this point, since we have no techniques for determining
whether an argument is valid. The point is to get you thinking about the
problems involved.

Problem Set 1

The following problems should be answered based on your intuitive knowl-
edge of logic. Much of the rest of this chapter is devoted to providing tech-
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niques to answer these questions. These problems should get you started
thinking about the ideas.

1.

7 I VI

Consider the argument in Example 1.1. Do you believe that it is a con-
vincing argument? Why or why not? Do you believe the conclusion?

. Answer the questions in Problem 1 for Example 1.2.
. Answer the questions in Problem 1 for Example 1.3.

. Answer the questions in Problem 1 for Example 1.4.

Explain why it is reasonable that a valid argument with false premises
produces conclusions which may or may not be true.

We said that an invalid argument could lead to a true conclusion. How
could this happen? What does this tell us about the process of proof?

Analyze the following argument, which is sometimes called the “apple
press” argument:

Apple presses eat apples.

Johnny eats apples.

Thus Johnny must be an apple press.

Obviously this is not a valid argument. Explain why.

In Problems 8 to 15, determine whether the argument given justifies the con-
clusion stated and explain why you think that this is the case.

8.

10.

11.

12.

13.

14.

If I get the job and work hard, then I will be promoted. I was promoted.
Thus I got the job.

. If T get the job and work hard, then I will be promoted. I was not pro-

moted. Thus either I did not get the job or I did not work hard.

I will either get an A in this course or I will not graduate. If I don’t
graduate, I will go into the army. I got an A. Thus, I won’t go into the
army.

I will either get an A in this course or I will not graduate. If T don’t
graduate, I will go into the army. I got a B. Thus, I will go into the army.

If the football game runs late, then 60 Minutes will be delayed. If 60
Minutes is delayed, then the local news will not start until after 11:00.
The local news started at 11:15, so the football game ran late.

If I buy a new car, then I will not be able to go to Florida in December.
Since I am going to Florida in December, I will not buy a new car.

Either the butler or the maid committed the crime. If t’he butler did it, he
would not have been able to answer the phone at-11:00. Since he did
answer the phone at 11:00, the maid must have done it.



15. If the temperature had gone down, Bill would not have gone to the
parade. Since Bill did not go to the parade, the temperature must have
gone down.

*16. Consider the following pair of statements:
(a) The statement labeled (b) is false.
(b) The statement labeled (a) is true.
Can either statement above be true? Why or why not?

*17. Consider the statement “I am telling a lie.” Can this statement be true?
Can it be false?

1.2 PROPOSITIONS

Mathematically Useful Statements

< we begin to study the logic used in mathematics, we should note first two

cmmonsense ideas which are built into the system of logic that we use and
the reasons why we use these ideas.

First, mathematically interesting statements are those which can be

shown to be either true or falses—or which at least could be shown to be true

or false if some additional information were known regarding variables used in
the statement. Statements like “If x is an odd number and y is an odd number,
then x + y is an odd number ” and “ The sum of the first n odd integers is n*”
are examples of statements which are mathematically interesting, because they
can be shown to be either true or false with no concern about the values of the
variables involved. The statement x + y = 4, on the other hand, would be
mathematically interesting also, provided that some kind of additional infor-
mation was given regarding the variables x and y. Do we mean to say this is
true for all values of x and y (unlikely)? Or, are we asserting that for all values
of x we can find a value of y such that the statement is true? Or, do we mean
to assert that this statement is true when x = 2 and y = 3? In any case, once
we make a decision about what we intend to do with x and y, we come up
with a statement that will be either true or false.

However, such statements as “Three is a pretty number” or “Fred is
tall,” though certainly legitimate in English, leave much to be desired mathe-
matically. We have no idea what a pretty number is, and the decision as to
whether 3 is pretty is quite subjective. Similarly, unless Fred is 10 feet tall, or 3
feet tall, it will be pretty difficult to come to any general agreement as to
whether that statement is true or not.

Second, a mathematical statement is either true or false but never both. It
is inferesting to consider a statement like “This statement is false,” which is
true if it is false and false if it is true. But such statements are mathematical
curiosities and are not the kind of thing to which we want to devote a lot of
time in this book.

1.2 PROPOSITIONS



There are some rather interesting consequences from these two concepts.

SRS o 1,05t obvious is usually called the law of the excluded middle. If a state-
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Mis not false, it is true). This seemingly
obvious fact is used very conveniently in some proof techniques, because
sometimes it is easier to prove that a statement is not false than it is to prove
that the statement is true. The other consequence of this idea is the reverse of
what we referred to above: If a statement is true, it is not false; and if a
statement is false, it is not true.

Despite the fact that the statements we made above would seem reason-
able to most of us, there are people who, for various philosophical reasons, do
not accept all that we stated above. In particular, there are mathematicians
(known as intuitionists) who do not accept the idea that a statement has been
proved true if it has been demonstrated that the statement is not false. They
feel that there is a difference between not false and true. Actually in everyday
life we sometimes use that kind of reasoning as well. People sometimes say, for
example, when asked how they feel about a decision that affects them, that
they are “not unhappy.” A little reflection might suggest that this is a weaker
statement than saying that they are happy. The statement that they are happy
should be true, but maybe it really is in some kind of intermediate state. The
mathematical logic of the intuitionists is interesting, but for our purposes we
stick with the law of the excluded middle for the things that we do in this
book.

Propositional Logic

We begin our study of logic by formally defining the idea of a proposition.

One of the goals of mathematics is to determine which propositions are
true and which are false.

Most, but not all, theorems are in the form “if something, then something
else.” In propositional logic, we learn how to work with statements of that
form in order to better understand how to prove theorems. When claiming
that a statement is a proposition, we need not know whether it is true or false;
we only need to know that it is the kind of statement which falls into one or
the other of those categories.

The statement “For any integer value n for which n > 2, the equation
a" + b" = ¢" has no solutions in which a, b, and ¢ are all nonzero integers” is



obviously either true or false. The fact that years of mathematical effort have
not resolved the issue as to which category that statement belongs does not
alter the fact the statement is a proposition."

EXAMPLE 1.5

The following are all propositions:

(a) There are two solutions to the equation x* + 4 = 20, and both solutions
are integers.

(b) Either this program runs, or there was an error in keying in the data.

(c) Ttis not the case that 5 is a prime number.

(d) If x is any integer, then x? is a positive integer.

(e) Every integer is the sum of four perfect squares. [ ]

EXAMPLE 1.6 )

The following are examples of statements that are not propositions.

(a) x* =11.

(b) This is a bad program.

(c) Go forit! [ |

Our first approach to mathematics is a study of propositional logic. The
basic building blocks of propositional logic are, naturally enough, proposi-
tions. In propomtmg@_l_lggl,c,_thg_gga\ll_s_to study the ways of combining-propo-
sitions to fwm&_,d-m—dﬂermmg ‘under what circumstances

these nWme Later we turn to a more inclu-
sive form of logic, which will enable us to use statements like Example 1.6a
and in effect turn them into propositions.

Notation

ropositions. It has become a tradition of sorts in elementary propos1t10nal
logic to use Towercase letters starting from p and continuing as needed (g, 7, s,
etc.) to represent propositions when we wish to study logic in a symbolic
fashion. (The reason for the use of p is that p is the first letter in the word
“ proposition.”)
In indicating that we will use a particular letter to stand for a proposition,
we will use the following kind of notation:

p:If x is any integer, then x? is positive or zero.

! This proposition was stated as a theorem by the famous French mathematician Pierre de
Fermat (1601-1665) and has been the subject of intense scrutiny ever since. But to this day it
remains one of the most puzzling unsolved problems in mathematics.

7
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8 This means that we would denote the proposition in Example 1.5a by p.

o I— Often these symbols are used as propositional variables, that is, as symbols

AND PROOFS that-could represent any proposition, rather than standing for a particular
proposition.

“In the next section, we begin to explore the process of combining several

propositions into one, which is a first step to explaining the process of proof.
Remember that our goal in this chapter is to develop the mathematical tech-
niques which we need to prove that a particular proposition is true (or false).

Problem Set 2

1. Classify the following statements as propositions or nonpropositions, and
explain your answers:
(a) The population of the United States is 185 million.
(b) July 4 occurs in the winter in the northern hemisphere.
(c) Elephants are smarter.
(d) X is greater than Y.

2. Classify the following statements as propositions or nonpropositions, and
explain your answers:
(a) Buy bonds!
(b) The DEC Rainbow is an 8-bit computer.
(c) A+ B=117.
(d) There is a largest prime number.

3. Construct an example of a proposition which is (a) false, (b) true, and (c)
of unknown truth.

4. Construct three statements that are not propositions, and explain why

they are not propositions.
Suppose that we have the following:

p: George Washington was the first president of the United States.
q: Abraham Lincoln discovered America.

5. Write the proposition which combines the propositions p and g with the
word “or.” Is this proposition true or false?

6. Repeat Problem 5 with the word “and.”

7. Write the proposition which is the “opposite” of p. Is this proposition
true or false?

8. Write the proposition “If p, then ¢” in good English. Is this statement
true or false?
Let p: Neil Armstrong walked on the moon.

q: IBM makes computers.



