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Foreword

It has been estimated that, at the present stage of our knowledge, one could give a
" 200 semester course on commutative algebra and algebraic geometry without ever
repeating himself. So any introduction to this subject must be highly selective.

I first want to indicate what point of view guided the selection of material
for this book. This introduction arose from lectures for students who had taken
a basic course in algebra and could therefore be presumed to have a knowledge
of linear algebra, ring and field theory, and Galois theory. The present text
shouldn’t require much more.

In the lectures and in this text I have undertaken with the fewest possible
auxiliary means to lead up to some recent results of commutative algebra and
algebraic geometry concerning the representation of algebraic varieties as in-
tersections of the least possible number of hypersurfaces and—a closely related
problem—with the most economical generation of ideals in Noetherian rings.

The question of the equations needed to describe an algebraic variety was
addressed by Kronecker in 1882, In the 1940s it was chiefly Perron who was
interested in this question; his discussions with Severi made the problem known
and contributed to sharpening the relevent concepts. Thanks to the general
progress of commutative algebra many beautiful results in this circle of questions
have been obtained, mainly after the solution of Serre’s problem on projective
modules. Because of their relatively elementary character they are especially
guitable for an introduction to commutative algebra.

if one sets the goal of leading up to these results (and sorne still unsolved
probiems), one is led into dealing with a large part of the basic concepts of
commutative algebra and algebraic geometry and to proving many facts which
can then serve as a basic stock for a deeper study of these subjects. Through
the close linking of ring-theoretic problems with those of algebraic geometry, the
role of commutative algebra in algebraic geometry becomes clear, and conversely
the algebraic inquiries are motivated by those of geometric origin.

Since the original guestion is classical, we begin with classical concepts of
algebraic geometry: varieties in affine or projective space. This quite naturally
presents us with an opportunity to lead up to the modern generalizations (spec-
tra, schemes) and to exhibit their utility. If.the detour is not too great, we shall
also pass through neighboring subjects on the way to our main goal. Yet some
elementary themes of commutative algebra have been entirely neglected, among
them: flat modules, completions, derivations and differentials, Hilbert polyng-
mials and multiplicity theory. From homological algebra we use only projective
resolutions and the Snake Lemma. We do not try to derive the niost general
known form of a proposition if to do so would seem to harm the readability of
the text or if the expense seems too great. . The references at the end of each
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viii . FOREWORD

chapter and the many exercises, which often contain parts of recent publications,
should help the reader to become more deeply informed.

The center of gravity of this book lies more in commutative algebra than in
algebraic geometry. For a continued study of algebraic geometry I recommend
one of the excellent works which have recently appeared and for which this text
may serve as preparatioh.

I shall now indicate mort"precisely what knowlédge this book assumes.

a) The most common facts of linear and muitilinear algebra for modules over
~ commutative rings. - - .

b) The simplest basic concepts of set-theoretic topology.

¢) The basic facts of the theory of rings and ideals, including factorial rings
(unique factorization domains) and the Noether isomorphism theorems for
rings and modules.

d) The theory of algebraic extensions of fields, including Galois theory, as well
as the basic facts about transcendence degree and transcendence bases.

Most of what is needed should come up in any introductory course on algebra,
so that the book can be read in connection with such a course. '

In preparing the text I have been helped by the critical remarks and many
good suggestions of H. Knebl, J. Koch, J. Rung, Dr. R. Sacher, and above all
Dr. R. Waldi. I have much to thank them for, as well as the Regensburg students
who industriously worked on the exercises. My special thanks also goes to Miss
Eva Weber for her patience in typing the manuscript.

- 3 ‘ Ernst Kunz
Regensburg, November 1978



Preface

Dr. Klaus Peters of Birkhduser Boston has suggested that I write a few words
as a Preface to the English edition of Professor Kunz’s book. This book will be
particularly valuable to the American student because it covers material that is
not available in any other textbooks or monographs. The subject of the book is
not restricted to commutative algebra developed as a pure discipline for its own
sake; nor is it aimed only at algebraic geometry where the intrinsic geometry
of a general n-dimensional variety plays the central role. Instead this book is
developed around the vital theme that certain areas of both subjects a‘e best un-
derstood together. This link"between the two subjects, forged in the nineteenth .
century, built further by Krull and Zariski, remains as active as ever. It deals
primarily with polynomial rings and affine algebraic geometry and with elemen-
tary and natural questions such as: What are the minimal number of elements
needed to generate certain modules over polynomial rings? Great progress has
been made on these questions in the last decade. In this book, the reader will
find at the same time a leisurely and clear exposition of the basic definitions and
results in both algebra and geometry, as well as an exposition of the important
recent progress due to Quillen-Suslin, Evans—-Eisenbud, Szpiro, Mohan Kumar
and others. The ample exericises are another excellent feature. Professor Kunz
has filled a longstanding need for an introduction to commutative algebra and al-
gebraic geometry that emphasizes the concrete elementary nature of the objects
with which both subjects began.

David Mumford

Preface to the English Edition

The English text is—except for a few minor changes—a translation of the Ger-
man edition of the book Einfiihrung in die Kommutative Algebra und Alge-
braische Geometrie. Some errors found in the original text have been removed
and several passages have been better formulateds In the references the reader’s
attention is drawn to new findings that are in direct correlation to the contents
of the book; the references were expanded accordingly.

I would like to thank all of my colleagues whose criticisms contributed toward
the improvement of the text, and naturally, of course, those mathematicians who -
expressed their recognition of the relevance of the book. My special thanks to
the translator, Mr. Michael Ackermann, for his excellent work.

Ernst Kunz
Baton Rouge, November 1981



Terminology

Throughout the book the term ring is used for a commutative ring with identity.
Every ring homomorphism R — S is supposed to map the unit element of R
onto the unit element of S; in particular if §/R is an extension of S over R,
. both S and R have the same unit element. If we say that a subset S of a ring
is multiplicatively closed we always assume that 1 € §. If M is a module over
a ring R the unit element of R operates as identity on M (1:-m = m for all
m € M). A"(K) denotes the n-dimensional affine space over the field K (n € N),
i. e. K™ with the usual affine structure. The affine subspaces of A" (K) are called
“linear varieties.” The same holds for the projective space P"(K).

If not otherwise specified, a corollary to a proposition will contain the same
assumptions as the proposition itself. If a statement is quoted, it will be given
by its number if the statement is contained in the same chapter. Otherwise the
number of the chapter in which the statement is found will be given first®e. g.
the theorem of Quillen and Suslin, Chap. IV, 3.14). References from the list of
textbooks found at the end of the book are quoted by letter, research papers are
quoted by numbers. Some papers which appeared after the publication of the
German edition of the book will be referred to in the text or in the footnotes.
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'Chapter |
Algebraic varieties

In this chapter affine algebraic varieties are introduced as the solution sets of
systems of algebraic equations, and projective varieties are introduced as the
solution sets in projective space of systems of algebraic equations involving only
homogeneous polynomials. Hilbert’s Nullstellensatz gives a necessary and suffi-
cient condition for the solvability of a system of algebraic equations. The basic
properties of varieties are discussed, and the relation to ideal theory is estab-
lished. We then introduce the spectrum of a ring and the homogeneous spectrum
of a graded ring and explain in what sense spectra generalize the concepts of
affine and projective varieties.

1. Affine algebraic varieties‘
Let A™(L) be n-dimensional affine space over a field L, K C L a subfield.

Definition 1.1. A subset V C A"(L) is called an affine algebraic K-variety if
there are polynomials f1, ..., frm € K[X1,...,Xn) such that V is the solution
set of the system of equations

-

fiXy. X)) =0 (i=1,...,m) (1)

in A"(L). (1) is called a system of defining equations of V, K a field of definition
of V, and L the coordinate field.

A K-variety V is also a K'-variety for any subfield K’ C L that contains
all the coefficients of a system of equations defining V' (e.g. if K C K’). The
concept of a K-variety is invariant under affine coordinate transformations

n
Xc':ZaikYk‘f'bi (s ="1,.00:0) (2)
k=1
if the coefficients a;; and b; are all in K.

We first consider some
Examples 1.2.
1. Linear K-varieties. These are the solution sets of systems of linear equations
with coefficients in K. Their investigation is part of “linear algebra.”
2. K-Hypersurfaces. These are defined by a single equation f(Xj,...,X,) =0,
where f € K[X,,...,X,] is a nonconstant polynomial (cf. Figs. 3-5 and
E?cercise 2). For n = 3 hypersurfaces are also called simply “surfaces.” By

1



CHAPTER 1. ALGEBRAIC VARIETIES

Fig. 1 Fig. 2
(X7 + X3 +4X;)? (X -9 + (X7 - 16)”

-16(X? +X3) =0 +2(X? +9)(X3-16)=0
Fig. 3

X2+X§=0

X4+ (X2 - X)X =0

¥

Fig. 6

Ky Xf=0; 107 XjNg=0
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definition every affine variety is the intersection of finitely many hypersur-
faces. Note that e.g. over the reals a “hypersurface” may be empty or may
consist of a single point (cf. also Exercises 3 and 6). Later we shall always
assume L algebraically closed; such phenomena cannot occur then.

Hypersurfaces of order 2 (quadrics) are described by equations

n
aix Xi X + Z bXi+ec=0

n
t,k=1 1=1

(Fig. 3).

. Plane algebraic curves are the hypersurfaces in A%(L), i.e. the solution sets
of equations f(X;,X7) = 0 with a nonconstant polynomial f in two vari-
ables (Figs. 1 and 2, Exercise 1). Such curves can be treated more simply
than arbitrary varieties, and here one can often make more precise state-
ments than in the general case. (Some textbooks that treat plane algebraic
curves are: Fulton [L], Seidenberg (S], Semple-Kneebone [T], Walker [W)]
and Brieskorn-Knorrer [Z].)

. Cones. If a variety V is defined by a system (1) with only homogeneous
polynomials f;, then it is called a K-cone with vertex at the origin. For
each z € V, z # (0,...,0), the whole line through z and the origin also
belongs to V' (Fig. 5).

. Quasihomogeneous varieties. A polynomial
i 0 e, Al bl e e

is called quasihomogenous of type o = (ay,...,a,) € Z" and degree d € Z if
Qy,..v, = 0forall (vy,...,05) with 37| ayu; # d. A variety is called quasi-
homogeneous if it is defined by a system (1) with only quasihomogeneous
polynomials f; of a fixed type a.

. Finite intersections and unions of affine varieties are affine varieties (Fig. 6).
It suffices to see this for two varieties. If one is defined by a sys-
tem fi(X1,...,Xn) = 0 (i = 1,...,m) and the other by a system
9;(X1,...,Xn) =0 (j = 1,...,1), then to get the intersection one just
puts the two systems together. To get the union one takes the system

fiX1,... . Xn) 95(X1y-. . Xn) =0 (i=1,...,m;j=1,...,])

. The product of two affine K-varieties. Let V C A"(L) be -the solution
set of a system f;(X1,...,X,) =0 (i =1,...,r) and W C A™(L) the
solution set of g;(Yy,...,¥m) =0 (5 = 1,...,5). Then the cartesian
product V x W C A™*™(L) is described by the union of the two systems,
the polynomials now considered as elements of K[X;,..., X, 1,..., ¥l
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8. Affine algebraic groups. For any matrix A € Gl(n,L) we can consider
(A,det A~!) as a point of A*'+!(L). Gl(n,L) is then identified with the
hypersurface H:

det(xik)i,k=l,...,n ‘T-1= 01
where the X, are to be replaced by the coefficients of A and T by det A,
Matrix multiplication defines a group operation on H:

HxH-—-H
(A,det A™') x (B,det B™!) — (A - B,det(AB)™!).

Varieties which, like these, are provided with a group operation, where multi-
plication and inverse formation are, as with matrices, given by “algebraic re-
lations,” are called algebraic groups. Their theory is an independent branch
of algebraic geometry (a textbook on this subject is Borel [I}).

9. Rational points of algebraic varieties. If V C A™(L) is a variety and R C L
is a subring, then one is often interested in the question of whether there
are points on V all of whose coordinates lie in R (“R-rational points”).
For example, the Fermat Problem asks about the existence of nontrivial
Z-rational points on the “Fermat variety”

XP+XP-XP=0 (n23)

(A reference for such difficult questions is Lang [Q].)
We now prove some facts about affine varieties, which easily follow from the
definition.

Proposition 1.3.

a) If L has infinitely many elements and n > 1, then outside any K-
hypersurface in A™(L) there are infinitely many points of A”(L). In partic-
ular, outside any K-variety V C A™(L) with V' # A™(L) there are infinitely
many points of A™(L).

b) If L is algebraically closed and n > 2, then any K-hypersurface in A™(L)
contains infinitely many points.

Proof.
a) Let the hypersurface be given by a nonconstant polynomial
FeK[X,...,Xn]

We may assume that X,,, say, actually occurs in F; we then have a repre-
sentation

: F=po+@1Xn+ -+ @ XE, (3)
with ¢; € K[X1,...,Xn-1] (=0,...,¢), t >0, and p; # 0. By the
induction hypothesis we may assume that there is an (z1,...,Zp—1) € L™~}
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with p4(z1,...,2p-1) # 0. F(21,...,Zn—1,Xy) is then a nonvanishing
polynomial in L[X,]. It has only finitely many zeros, but L is infinite.
Hence there are infinitely many z,, € L with F(zy,...,Zp—1,25) # 0.

b) Let the hypersurface be given by a polynomial F of the form (3). Then
there are infinitely many (zi,...,Zn—1) € L®~! with ©4(z1,...,Zn-1) #0.
Since L is algebraically closed, for each of these (zj,...,Z,—) there is an
z, € L with F(z4,...,Zp—1,Zn) =0.

Definition 1.4. For a subset V C A™(L) theset J(V) of all F € K[X;,...,Xy]
with F(z) = 0 for all z € V is called the ideal of V in K[Xy,...,X,] (the
“vanishing ideal”).

For hypersurfaces we have

Proposition 1.5.

Let L be algebraically closed and n > 1. Let H C A"(L) be a K-
hypersurface defined by an equation F = 0, and let F =c¢- F{' -.... F®* be a
decomposition of F' into a product of powers of pairwise unassociated irreducible
polynomials F; (c € K*). Then J(H) = (Fy ... Fy).

Proof. Of course F} -...- Fs € J(H). It suffices to show that any G € J(H) is
divisible by all the F; (¢ = 1,...,8). Suppose that, for some 7 € [1, 5], F; is not
a divisor of G. We can think of F; as written in the form (3). F; and G are then
(according to Gauss) also relatively prime as elements of K(Xi,...,Xn-1)[Xn).
Hence there are polynomials a;, a3 € K[X;,...,X,] and d € K[X;,...,X,_1],
d # 0, such that

d= ali‘i + GQG.

By 1.3a) there is an (z;,...,Z,—1) € L™ ! with
d(z1,...,2pn-1) “oe(21,.. ., Tno1) # 0.

We choose z, € L with Fi(z;,...,Zn-1,2,) = 0. Then (z;,...,2,) € H and so
G(z1,...,7,) = 0. But this is a contradiction, since d(z;,...,z,-1) # 0.
Between the K-varieties V' C A"(L) and the ideals of the polynomial ring
K[X;i,...,X,] there is a very close connection, which is the reason that ideal
theory is of great significance for algebraic geometry.
We recall the following concepts of ideal theory in a commutative ring with
unity.
Definition 1.6.

1. A system of generators of an ideal I is a family {a)}sea of elements ay € I
such that each @ € I is a linear combination of the a) with coefficients in
R. I is called finitely generated if I has a finite system of generators.

2. The ideal generated by a family {a)}ca of elements a) € R is the set of all
linear combinations of the a) with coefficients in RB. In the future we shall
write ({ax}aea) for this ideal. By definition the empty family generates the
zero ideal.
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3. The sum ., I of a family {I)}rea of ideals of a ring is the set of al]
sums Y_, 5 @y With ay € Iy, ay # 0 for only finitely many A.

4. The product Iy - ... I, of finitely many ideals I;,...,I, of a ring is the
ideal generated by all the products a; - ... a, with a; € I;(j = 1,...,n).
In particular, this defines the n-th power I" of an ideal I : I" is the ideal
generated by all the products a; -...-a, (a; € I).

. The radical Rad(I) of an ideal I is the set of all r € R some power of which
lies in [. It is easily shown that Rad(J) is indeed an ideal. Rad(0) is called
the nilradical of R. It consists of all the nilpotent elements of R, so this set
is an ideal of R. A ring R is called reduced if Rai‘ . For any ring R,
R.eq := R/Rad(0) is reduced. Rreq is called § e reduced ring belonging
to R.

6. An ideal I of R is called a prime ideal if the following holds: If a,b € R and
a-bel, thene € I orbe I. Iisa prime ideal if and only if R/I is an
integral domain. For an arbitrary ideal I we will call any prime ideal of R
that contains I a prime divisor of I. A prime ideal ‘P is called a minimal
prime divisor of I if p’ = P for any prime divisor B’ of I with P’ C P.
From the definition of a prime ideal it easily follows that: A prime ideal that
contains the intersection (or the product) or two ideals contains one of the
two ideals. Moreover, Rad(B) = P for any prime ideal ‘B.

7. An ideal 7 # R is called a maximal ideal of R if I' = I for any ideal I' # R
with I C I’. An ideal I is makimal if and only if R/[ is a field.

8. The intersection of a family {I)}xea of ideals of a ring is an ideal. The same
holds for the union if the following condition is satisfied: For all A;,Aq € A
there is a A € A with I, I, C I,. '

9. Let S/R be an extension of rings, I C R an ideal. The extension ideal of I
in § is the ideal generated by I in S. it is denoted by /S. More generally, if
@ : R — § is a homomorphism of rings, 7S denotes the ideal of § generated

by (7).

Definition 1.7. The zero set in A™(L) of an ideal / C K[X;,...,Xy] is the set
of all common zeros in A"(L) of the polynomials in I. We denote it by 0 (7)
(the “variety of I"). ;

Once it is proved that any ideal I C K[Xy,...,X,] has a finite system of
renerators f1,..., fm (§2), it will follow that U (I) is a K-variety (with defining
ystem of equations f; =0 (: = 1,...,m)).

[+1]

For the operations J and U the following rules hold.

ilules 1.8.
a) J(A™(L)) = (0) if L is infinite; 3(9) = (1).
b) For any set V C A™(L), I(V) = Rad(J(V))
c) For any variety V C'A®(L), B(I(V)) =
d) For two varieties V3, V3, we have V; C Vz if.and only if J(V;) D J(Vz), and
Vi S V; if and only if J(Vl) 2 J(Va).
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e) For two varieties V;,Va, we have J(VUVy) = J(Vi)N J(Vz) and ViUV, =
B(I(V1) - I(Va)).
f) For any family {V,}xea of varieties V,

N Va=B(D_IW)).

A€EA A€A

Proof. a), b), e), and f) easily follow from the definitions.
¢) Evidently V € B (3(V)). On the other hand, if V is the zero set of the poly-
nomials fy,..., fm, then f1,..., fm € 3(V) and hence V. = V(fy,..., fm) D
B(IV)).
d) From J3(V;) D 3(V2) it follows by ¢) that Vi = B(3(V1)) € B(I(V2)) = Va.
The remaining statements of d) are now clear,

In particular, the rules show that V + J(V) is an injective, inclusion-
reversing mapping of the set of all K-varieties V. C A™(L) into the set of all
ideals I of K|[X;,...,X,| with Rad(I) = I. Hilbert’s Nulistellensatz (§3) will
show that this mapping is also bijective if L is algebraically closed. Once it is
shown that any ideal in K[X;,..., X,] is finitely generated, it will follow from
1.8f) that the intersection of an arbitrary family of K-varieties in A"(L) is a
K-variety.

Definition 1.9. A K-variety V is called irreducible if the following holds: If
V =V; UV, with K-varieties V;,V,, then V =V, or V = V.

Fig. 6 shows an example of a reducible variety. The concept of irreducibility
depends in general on the field of definition K; for example, the solution set in
C of the equation X? + 1 = 0 is irreducible over R but not over C.

Proposition 1.10. A K-variety V' C A"(L) is irreducible if and only if its ideal
J(V) is prime.

Proof. Let V be irreducible and let fy, fo € K[X},...,Xa] be polynomials with
f1-f2€ 3(V). For H; := U(f;) (i =1,2) we then have V = (VNH;)U(VNH;)
andsoV=VNH,orV=VNH,;. FromV C H; or V C H; it then follows
that f; € I(V) or fa € I(V); i.e. I(V) is prime.

Now let J(V) be prime. Suppose there are K-varieties V;,V2 with V =V U
Va,V #V; (i =1,2). By 1.8 we have 3(V) = 3(V1) N 3(V;) and 3(V) # 3(V;)
(s = 1,2). Then there are polynomials f; € 3(V;), fi € I(V) (i = 1,2). But,
since fy - fa € J(V1) N I(V2), we have reached a contradiction.

In the following statements let L be algebraically closed.

Corollary 1.11. A K-hypersurface H C A™(L) is irreducible if and only if it
is the zero set of an irreducible polynomial F € K|[X;,...,Xy].

Namely, the principal ideal J(H) (cf. 1.5) is prime if and only if it is gener-
ated by an irreducible polynomial.
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Corollary 1.12. A K-hypersurface can be represented in the form
H=HU---UH, (H.'#ijOl‘i#]')

with irreducible K-hypersurfaces H;. This representation is unique (up to its
ordering).

Proof. Let J(H) = (Fy -... - F,) as in 1.5 and H; := U(F;). Then H =
HyU---UH, (H; # Hj for i # j) and by 1.11 the H; are irreducible hypersurfaces.
If H = H{U-- U Hj is any such representation, where J(H}) = (G,) with
G]' € K[Xl,...,X,.] (J.= 1,...,t), then J(H) = (Fl . ...'F,) = (G1 Gg)
and hence F; - ...- Fy = aGy -...- Gy with a € K*X. By the theorem on unique
factorization in K[Xy,...,Xy,], we get ¢ = s and, with a suitable numbering,
Hi=H; (i=1,...,8).

The considerations of the next section will show that, just as for hypersur-
faces, there is a unique decomposition of an arbitrary variety into irreducible
subvarieties. This is important because many questions about varieties can be
reduced to questions about irreducible varieties, and these are often easier to
answer.

Exercises

1. Sketch the algebraic curves in R? given by the following equations (espe-
cially in the neighborhood of their “singularities,” i.e. where both partial
derivatives of the defining polynomial vanish):

X} -X3=0, X+Xxt+Xxi=0,
xX2+x:-x3 =0, Xt-X{+Xxi=o0,
X3+ X2+X2=0, (X?+X3)—4X2X2=0,
X{-X}+Xx3=0, Xt +X;-1=0.

(It is often advantageous to consider the points of intersection of the curve
with the lines X; = tX; in order tc get a “parametric representation” of
the curve.)

2. Describe the following algebraic surfaces in R® by. comparing their intersec-
tions with the planes X = ¢ for variable ¢ € R:

X?-Y2Z =0, (X2 +Y2)3-2x%v2 =0,
X2 4+Y?4+XYZ =0, X3+2ZX?-v3=0.

3. If the field K is not algebraically closed, then any K-variety V C A"(K) can
be written as the zero set of a single polynomial in K[X;,...,X,]. (Hiot: It
suffices to show that for any m > 0 there is a polynomial ¢ € K[Xj,...,Xm]
whose only zero is (0,...,0) € A™(K). If V is defined by a system of
equations (1), put ¢(f1,...,fm) =0.)



