INTRODUCTIONTO
FORTRAN IV

SECOND EDITION

BBBBBBBBBBBBBB

INTRODUCTION TO
FORTRAN IV

SECOND EDITION

ROBERT H. HAMMOND

Associate Professor of Engineering
Director, Freshman Engineering
and Student Services Division
Notth Carolina State University

WILLIAM B. ROGERS

Professor of Engineering Fundamentals
Virginia Polytech#ic Institute
and State University

BYARD HOUCK, Jr.

Senior Advisor in Engineering
North Carolina State University

' 13460

McGRAW-HILL BOOK COMPANY

New York St. Louis San Francisco Auckland Bogot4
Dusseldorf Johannesburg condon Madrid Mexico

’ Montreal New Delhi Panama Paris Sao Paulo
Singapore Sydney Tokyo Toronto

® »‘1”’?‘

INTRODUCTION TO FORTRAN |V

“Copyright © 1978, 1976 by McGraw-Hill, Inc.

All rights reserved.

Printed in the United States of America.

No part of this publication may be reproduced,
stored in a retrieval system, or. transmitted,

in any form or by any means, electronic,

mechanical, photocopying, recording, or otherwise,
without the prior written permission of the publisher.

234567890 DODO 78321098
Library of Congress Cataloging in Publication Data

Hammond, Robert H.
Introduction to FORTRAN IV,

Includes index. .
1. FORTRAN (Computer program-language) 1. Rogers,
William B., date joint author. I11. Houck, Byard,
joint author. 2
QA76.73.F25H36 1978 001.6'424 77-6430

ISBN 0-07-025897-X

This book was set in Univers Medium by Hemisphere Publishing Corporation.
The editor was B. J. Clark;

the cover was designed by Scott Chelius;

the production supervisor was Donna Piligra.

The printer and binder was R. R. Donnelley & Sons Company.

PREFACE
TOTHE
SECONDEDITION

The ink is scarcely dry on the pages of a new textbook before the author’s
telephone begins to ring. Congratulations on the new publication? Perhaps,
‘but more than likely it is a gleeful colleague with the good news, ‘‘Say, |
found. a mistake in your book.” Mistakes in typography and other minor
aberrations overlooked in the final proofreading are an annoying and embar-
rassing, but inevitable, fact of life. One can only hope to reduce such blunders
to an acceptable minimum and strive to locate and correct as many as possible
in a second or third printing. ‘ .

When the availability of a textbook in.the used book market significantly _
affects new book sales, a new edition is indicated. There are, of course, other
cogent reasons, more pedagogic than economic, for a complete revision.
Among these reasons are obsolescence and the availability of new information
or data; the discrediting of old and the “accepting of new hypotheses; new
discoveries in the state of an art or craft; and the need indicated by users to
expand existing information, add new topic areas, and improve and clarify the
presentation of existing material. It is this last reason that has persuaded the
authors and publisher to undertake the substantial task of preparing a second
edition. Students have convinced us that some explanations were less than
crystal clear or stopped short of answering all the obvious questions. Instruc-
tors have expressed a netd for material not included, more detailed coverage
in certain areas, and more illustrative examples and problems.

Specifically, some subject areas have been rearranged or combined under a
single chapter heading in a more logical progression or grouping. We have
added computed GO TO, character output using the PRINT statement, charac-
ter input with the DATA statement and character manipulation, and a more
detailed explanation, of paper control. Discussion of arrays and subsci'ipted
variables has been expanded. More illustrations and sample problems have

viii PREFACE TO THE SECOND EDITION

been added, and the number of problems in each chapter has, in most cases,
been almost tripled. We hope that we have not done too much, that we have
not defeated our original purpose of presenting the elements of the FORTRAN
" language in a simple, straightforward, and easy-to-understand fashion. The
authors realize that all instructors may not want to include every page, sec-
tion, or paragraph in their initial assignments. But when mistakes and unex-
pected results occur in programming, specific referral can be made to explain
what happened and how to correct the situation. '

We have carefully considered and greatly appreciate the suggestions for
improvement made by our colleagues and students, and hope that we have
'adequately met the requirements of the majority of the users in this second
edition. In particular, we thank Professor Parriz F. Rad, Clemson University,
and Professor Robert D. LaRue, The Ohio State University, for their pain-
staking review of the manuscript and their valuable comments. To both new
and old users who stand ready with reading glass and dictionary, good
hunting.

Robert H. Hammond
William B. Rogers
-Byard Houck, Jr.

PREFACE
TOTHE
FIRST EDITION

The publication of a new textbook dealing with the FORTRAN computer
language might aptly be compared with the arrival of another starling on the
horizon to join the flock already roosting in the town park—and greeted with
about the same interest and enthusiasm! Professors write textbooks for a-
variety of reasons: to supplement their salaries; to satisfy a pressing institu-
tional requirement to publish or perish; to ifnpress other professors with their
erudition; to gratify their egos; and perhaps once in a great while to help a
few less-than-brilliant students to improve their understanding of the rudi-
ments of a specific subject area. The authors plead nolo contendere to any
and all of these spurious mcentlves but smcerely hope that their primary
motivation has been to provnde a usable textbook which will snmpllfy the
fundamentals of FORTRAN for the average college student.

The authors do not claim to be authorities in the field of computer
programming or even experts in the use of the FORTRAN language. This brief
exposition is not a definitive text, nor is it a comprehensive reference book.
In fact, the authors have not even discussed the subject to the extent of their
own limited knowledge. The most obvious fault to those real or self-styled
experts who take the trouble to critically examine what we have written will
be oversimplifications in-some areas and significant (by some opinion) omis-
sions in others. To these oversimplifications and omissions, we plead guilty.

Why do we presume to drench an already saturated area with still more
verbiage? Because we believe we have said it so the beginning student can
understand it. For many years the authors have taught elementary engineering
subjects, including FORTRAN programming, to thousands of freshmen at the
United States Military Academy, North Carolina State University, and the
Virginia Polytechnic Institute and State University. At the same time, we have
taught many novice professors the techniques of classroom presentation and

PREFACE TO THE FIRST EDITION

have supervised their subsequent performance. If there is any field in which
the authors may modestly claim expertise, it is in the forced-feeding of
required technical foundation subject matter to large numbers of generally
indifferent beginners.

It is for this mass audience of indifferent beginners that this textbook is
written. The authors have attempted to reduce the often mysterious and
. seemingly complex ‘world of the computer to its simplest elements. The
terminology has been purged of unnecessary ‘“computerese.” Both the lan-
guage and the mathematics should be readily understood by anyone with a
reasonable high school education and average verbal comprehension.

No attempt has been made to present everything there is to know about
FORTRAN. Enough is covered to permit the student to understand the
fundamental techniques of the language and, with practice, to write meaning-
ful programs. In general, only one way of accomplishing a desired result is,
discussed. Options, exceptions, shortcuts, and exotic statements or routines
not likely to be encountered by the beginner have been avoided. The téxt
material has been implemented by illustrations which provide a brief graphic
summary of fundamental instructions. Flow diagrams and computer printouts
illustrate applications and the results obtained from each routine discussed.
lllustrative problems previously introduced are again used in succeeding chap-
ters so that the student can concentrate on the new FORTRAN instruction
being discussed without also worrying about the concepts in a new problem.
The-problems given at the end of the various chapters are basic in concepts so
that the student can concentrate on applying the FORTRAN principles and
not be overcome by the concepts involved in the problem. When a student has
demonstrated an understanding of FORTRAN, the teacher may assign more
advanced problems that involve the teacher’s interests and objectives.

This textbook is written primarily for students at institutions where the
WATFIV compiler for FORTRAN |V is used. There are a few discussions that
apply only to WATFIV users. However, if WATFIV is not the compiler used,
the teacher can eliminate those discussions and adapt the other discussions to
fit other compilers. ;

The authors have enjoyed some success in their classes with this material in
the form of handouts, projecturals, and chalkboard sketches. We now offer it
to you, the average beginning student, with the hope that it will ease
somewhat the process of learning this fascinating FORTRAN.

And, to you, professor: There should be sufficient material in this text-
book to keep both you and your students gainfully occupied for one full
semester. Or, if you talk fast, it can be covered in one quarter.

Y Robert H. Hammond
William B. Rogers
Byard Houck, Jr.

v

CONTENTS |

Preface to the Second Edition

Preface to the Firs‘t Edition

1 What Is a Digitai Computer?

.2 How Does the Comppter Compute?

3 Getting Iﬁformation In and Out

4 Telling the Computer How to Decide and Repeat
» 5 Planning Your Program

6 What Calculations Can FORTRAN Do for You?
7 When a Variable Needs More Than One Value

8 Finding the Bug

9 Making Your Own Subprograms

" 10 How Accurate Is the Computer?

Appendixes

A FORTRAN |V Statements and Library Functions
B Qperation of the IBM 029 Card Punch

Index

vii

17
33
79

103

13

125

151

161

177

187
191
195

WHAT IS A
" DIGITAL
COMPUTER?

11

INTRODUCTION ; :

There ‘are two types of computers in wide use today: digital and analog
computers. The digital computer is essentially a counting device and operates
with numbers represented by a finite sequence of digits. The analog computer
operates by measuring the magnitudes of the quantities in an electric circuit
which is set up to parallel (or be analogous to) the equation of the phe-
nomenon being investigated. Analog-computer results are usually displayed as
a curve on a cathode-ray tube, and numerical quantities are not shown.

The needs of modern-day computations have led to the increasing use of a
combination of digital and analog computers. This combination is known as a
hybrid computer. A detailed discussion of the use of hybrid computers, as

“well as any discussion of analog computers, is outside the scope of this text,.
t_)ut all students should be aware of ,their existence.

1-2

THE BASIC COMPONENTS OF DIGITAL COMPUTERS

A general-purpose digital computer consists basically of five components or
functional units: input, storage, arithmetic, control, and output units. The
re|ationship of these functional units is represented by the block diagram in
Fig. 1-1. Information is interchanged between these units as indicated by the
arrows,

a The Input Unit The /input unit places the desired instructions and data into
the storage unit. A commonly used input device is the card reader, illustrated
in Fig. 1-2. A card reader senses the holes punched in a computer card and
transmits the information punched in the cards to the storage unit. This is the

2 WHAT IS A DIGITAL COMPUTER?

FIG. 1-1

Basic components, or func-
tional units, of a digital com-
puter. Solid lines represent
flow of information (data),
dashed lines represent flow of
control signals.

FIG. 1-2
IBM 3505 card reader. (Cour-
tesy of IBM.)

—— —— = ——] S
e 3 Control unit : —_.).._.I
| |
| I A A 4 { : I
\ 4
|
B 0
u u
* =8 & Storage 2y t n
E i = unit = p i
| g §a:
I t
I
I
| 1
{ A
L————-)—- Arithmetic unit

only input device that will be discussed in this text. However, other input
devices that may be available include the typewriter, the tape drive, and
punched paper tape. The input unit desired is specified by an appropriate
code number in the input instructions.

1-2 THE BASIC COMPONENTS OF DIGITAL COMPUTERS

Before using the card reader, blank computer cards must first be punched
on a machine called a card punch, illustrated in Fig. 1-3. Brief instructions
covering the basic operation of the IBM 029 card punch are given in Ap-
pendix B. The keys of the card punch are similar to the keys of a standard
typewriter; however, pressing them causes one or more holes to be punched in
the card. The rectangular hole or pattern of holes represents the desired
character. ’

b The Storage Unit The storage unit consists of many core planes (see Fig.
1-4). Each core plane is made up of a number of ferrite cores (or rings) strung

on hair-thin wires. Dependent upon how current is passed through these wires, -

each ring can be magnetized with either a clockwise or a counterclockwise
magnetic field. The rings are divided into groups of rings, with each group
known as ‘a “word.” Each word has its own unique address which the
computer knows. The size of a word can vary from a 1- to 1@-digit number
(or more), depending upon the capability of the individual computer. Com-
puter users must always determine the word size of the particular computer
that they will be using.

A distinctive feature of the storage unit of a general-purpose computer is
destructive read-in and nondestructive read-out. Each time information is
stored in a given word, the previous contents of that word are erased as the
new data are read in. However, the contents of that word can be moved to
another word with a different address without changing the contents of the
original word. This feature is important to remember in preparing instructions

FIG. 1-3
IBM 029 card punch. (Cour-
tesy of I1BM.)

4

FIG. 1-4
(@) Core plane with ferrite
cores visible on intersecting
conductors. (Courtesy of
18M.) (b) Enlarged drawing
of a core.

WHAT IS A DIGITAL COMPUTER?

(b)

for the computer. A second characteristic of this type of storage unit is called
random access, which means that any word address in the storage unit is as
easy to find as any other address and takes the same amount of time.

Auxiliary storage capacity may be added by using magnetic tapes or discs.
Access to information stored on tape is sequential. To retrieve a given item,
the entire tape must be examined from some starting point to the location of
the desired information. Thus, it may take more time to find one word than
another. The magnetic disc is a cross between random and sequential access
and requires less time to search than the tape. The discussion in this text will
be confined to the basic random-access storage unit. When students advance to
the point where auxiliary storage capacity is required for their programs, they
should consult the systéms manuals on file at the local computer center or
refer to a more comprehensive computer textbook.)

The storage unit is also known as the 'memory unit. The term memory is
not used in this text because it implies the human capability to remember. To
those unfamiliar with the computer, it also implies the ability to think. Both
these implications are misleading. A computer does not remember, nor does it
think for itself. The computer does precisely what it is instructed to do—
nothing more, nothing less. The computer’s sequence of actions and the
results thereof depend solely upon the instructions it receives from a human
programmer. An often used expression among computer people is ‘‘garbage
in—garbage out,” which means that unless the logic of the program is cor-
rectly planned to perform the desired calculations, the output will be mean-
ingless or misleading.

¢ The Arithmetic Unit The arithmetic unit is a portion of the computer set
aside for performing the basic arithmetic operations: addition, subtraction,
multiplication, and division. It also provides temporary storage for holding the

1-2 THE SASIC COMPONENTS OF DIGITAL COMPUTERS b5

results of these operations. This small storage unit is known as the accumu-
lator.

d The Control Unit The contro/ unit is the heart of the modern digital
computer. It selects an instruction and causes the computer to obey that
instruction whether it be to read a data card, perform some arithmetic
operation, compare two values, or print results. The control unit consists
primarily of two parts: a small storage unit known as the instruction register
(IR) and. a device called the instruction counter (IC).

e The Output Unit Printed resuits from the computer may be obtained from
the printer. This machine prints the pages of results commonly associated with
computer systems and is illustrated in Fig. 1-5. Other output units punch
cards, store information on magnetic or punched paper tape, utilize the
typewriter on the computer console or remote terminal, or display results on
a cathode-ray tube (CRT). The output unit desired is specified by an appro-
priate code number in the output instructions.

FIG. 1-5
IBM 3211 line printer. (Cour-
tesy of IBM.)

WHAT IS A DIGITAL COMPUTER?

1-3

THE STORED-PROGRAM CONCEPT

Before any problem can be solved on the computer, a set of step-by-step
instructions must be written which precisely describe how to solve the prob-
lem. This set of instructions is called a program. The program must be written
in a /language which the computer can understand. Each step of the program is
called a statement. Usually each statement is punched on a separate card
called an instruction card. After all instruction cards have been punched and
arranged in order, each item of numerical data is punched on a card. These
cards are called data cards and follow the last instruction card. Depending
upon how the program is written, each item of data may be punched on a
separate card or many items of data may be punched on the same card.

In the preceding paragraph we stated that the program must be written in a
language which the computer can understand. Actually, the computer can
understand only machine /language, a language which is complex and lengthy.
The computer cannot understand directly the user-oriented FORTRAN lan-
guage. instead an intermediate program must be employed which can be
stored in the computer and translate the user-oriented FORTRAN into the
machine-oriented language of the computer. Such a program is called.a
compiler. Most compilers also inciude diagnostic routines which result in
printing error messages that point out certain standard programming errors for
the programmer’s assistance. This capability will be discussed . more detail in
Chap. 8. Another usual output of the compiler is a listing of the exact
FORTRAN program read by the computer so that the programmer can see in
printed form what was actually read from the punched cards.

The computer solution to ‘a particular problem is separated into two
phases. First, the entire set of instructions (or program) is read, translated,
and filed in the storage unit, each individual instruction occupying a word (or
words as required) with a distinct address; this first phase—reading the pro-
gram, translating, and filing it in the storage_ unit—is called compilation.
Second, each separate instruction is called sequentially from the storage unit
and held temporarily in the instruction register of the control unit while that
instruction is executed; this second phase—performing the operation called for
_in the instruction—is called execution. This two-phase procedure in which the
-computer first stores the program in its entirety (compilation) and then
automatically and sequentially follows those instructions is known as the
stored-program concept and is the essence of digital-eomputer operation.

Consider a simple arithmetic problem: the sum of two numbers such as
32 + 18 = 50. Without attempting to simulate any actual computer language
but using instructions understandable to the reader and assuming computer
acceptability, the following program has been written to read two numerical
values, 32 and 18, punched on two data cards, and to compute and print the
sum. (Each instruction is assumed to have been punched on an individual
instruction card and identified alphabetically by letters A, B, C, etc. The
numerical values 32 and 18 have each been nunched on a separate data card.)

Instruction A: Read a data card and store its value in address 2-1

1-3 THE STORED-PROGRAM CONCEPT -7

Instruction B: Read the next data card and store its value in address 2-2
Instruction C: Copy the value in address 2-1 into the accumulator
Instruction D:b Add the value in addréss 2-2 to the value in the accumulator
_Instruction E: Store the value in the accumulator in address 2-3

Instruction F: Print the value }n address 2-3

(End of Instructions)

Data: 32

Data: 18

Figure 1-6 represents a graphical simulation of the five functional units of
the computer as described in Sec. 1-2. The storage‘unit provides for 30
“words’’ whose locations are specified by a two-digit numerical ‘‘address’
identifying the row and column, respectively. (For example, the address of the
bottom right space or word is 5-6, row 5, column 6.) The XX's in the storage
unit, the instruction register (IR), instruction counter (IC), and the accumula-
tor (Fig. 1-6a) represent miscellaneous information remaining in storage after
completion -of the previous program. When current information is read into
storage, previously stored information will be destroyed. To start the se-

Deck of punched cards

Data 18

S B ic | xx
unit]

Storage Unit
1 2 3 4 5 6
1 XX | XX | XX | XX | XX | XX

\ Inpgt 2| xx | xx [xx [xx | xx | xx

i unit
3| XX | XX | XX | XX | XX | XX

4| XX | XX | XX | XX | XX | XX

5| XX | XX | XX [XX | XX | XX Address 5-6

+ + : FIG. 1-6a
Simulation of computer ready
Arithmetic Accumiiiator. | % x for input of instructions. (IR,

unit instruction register; IC, in-
struction counter.)

8 WHAT IS A DIGITAL COMPUTER?

FIG. 1-6b
Simulation of computer ready
for execution.

FIG. 1-6¢
Simulation of computer after
execution of instruction A,

unit

Comyol. & wchuy ic |11
unit
. Storage Unit

1| 2] 3] 4a4]ls]e6s
a]lslc]o]e]c-r
2| xx | xx | xx | xx | xx | xx

T3l xx | xx | xx | xx | xx | xx
al xx | xx | xx | xx | xx | xx
s XX | XX | XX | XX | xx |xx
Arithrpetic Accumulator | XX

unit
oo L ont s ic | 141
unit
Storage unit '

1 3 4 | 5 6
lAa]lslc|D|E|F
2| 32 | xx | xx | xx | xx [xx-
3| xx | xx | xx | xx | xx | xx
al xx | xx | xx | xx | xx | xx
sl xx |.xx | xx | xx | xx | xx

Arithmetic

Accumulator | XX |

Output
unit

1-3. THE STORED-PROGRAM CONCEPT

quence, the card deck is placed in the card reader (as indicated in Fig. 1-6a),
the “‘start” button is pressed, and action begins.

The condition of the computer after all instructions have been read in
(compilation is complete) is shown in Fig. 1-6b6. Instructions A, B, C, D, E,
and F are stored sequentially in words with addresses 1-1, 1-2, 1-3, 1-4, 1.5,
and 1-6, respectively. The information remaining from previous calculations
(XX) has been destroyed in addresses 1-1 to 1-6 and replaced by the new and
relevant information. Note that the instruction counter (IC) has been auto-
matically set to the address of the flrst instruction (1-1). Execution of the
program begins.

In Flg. 1-6¢, the first instruction (mstructlon A in address 1-1) has been
“copied” into the instruction register (IR), destroying the previous instruction
(XX) but leaving instruction A unchanged in address 1-1. The computer then
executes instruction A:

Read a data card and store its value in address 2-1.

The first data card in sequence is read, and the numerical value punched
therein (32) is stored in word address 2-1. The IC automatlcally increments to
the next address in sequence (1-2).

Figure 1-8d illustrates the execution of instruction B. The IC calls for the
instruction in address 1-2 (instruction B) to be copied into the IR, destroying
the previous instruction (instruction A). Note that instruction B remains
unchanged in address 1-2. The computer then executes instruction B:

Control

] IR B | IcC | 1-2
unit
Storage Unit AN
1 3 4 5 6

2| 32| 18] xx | xx | xx | xx
v 3| xx | xx | xx | xx | xx | xx

4] XX | XX | XX | XX | XX | XX

5 XX | XX | XX | XX | XX | XX

Arithmetic
unit

Accumulator | XX

FIG. 1-6d
Simulation qf computer after
execution of instruction B,

