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preface

to the .
second edition

The primary difference between this new edition and the first one is
the addition of several exercises in each chapter and a brand new section
in Chapter 7. The exercises, which are both true-false and multiple choice,
will enable the student to test his grasp of the definitions and theorems in
the chapter. The new section in Chapter 7 illustrates the geometric con-
tent of Sylvester’s Theorem by means of conic sections and quadric
surfaces.

We would also like to thank the correspondents and students who have
brought to our attention various misprints in the first edition that we
have corrected in this edition .

MADISON, WISCONSIN H.S.
KANSAS CITY, MISSOURI G.P.B.
OCTOBER 1972



preface

to the

first edition

Linear algebra is now one of the central disciplines in
mathematics. A student of pure mathematics must know
linear algebra if he is to continue with modern algebra or
functional analysis. Much of the mathematics now taught
to engineers and physicists requires it. It is for this reason that
the Committee on Undergraduate Programs in Mathematics
recommends that linear algebra be taught early in the under-
graduate curriculum. In this book, written mainly for students
in physics, engineering, economics, and other fields outside
mathematics, we attempt to make the subject accessible to a
sophomore or even a freshman student with little mathemati-
cal experience. After a short introduction to matrices in
Chapter 1, we deal with the solving of linear equations in
Chapter 2. We then use the insight gained there to motivate
the study of abstract vector spaces in Chapter 3. Chapter 4
deals with determinants. Here we give an axiomatic definition,
but quickly develop the determinant as a signed sum of
products.

For the last thirty years there has been a vigorous and
sometimes acrimonious discussion between the proponents
of matrices and those of linear transformation. The con-
troversy now appears somewhat absurd, since the level of
abstraction that is appropriate is surely determined by the
mathematical goal. Thus, if one is aiming to generalize toward
ring theory, one should evidently stress linear transformations.
On the other hand, if one is looking for the linear algebra
analogue of the classical inequalities, then clearly matrices
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form the natural setting. From a pedagogical point of view, it seems
appropriate to us, in the case of sophomore students, first to deal with
matrices. We turn to linear transformations in Chapter 5. In Chapter 6,
which deals with eigenvalues and similarity, we do some rapid switching
between the matrix and the linear transformation points of view. We use
whichever approach seems better at any given time. We feel that a stu-
dent of linear algebra must acquire the skill of switching from one point
of view to another to become proficient in this field.

Chapter 7 deals with inner product spaces. In Chapter 8 we deal with
systems of linear differential equations. Obviously, for this chapter
(and this chapter only) calculus is a prerequisite. There are at least two
good reasons for including some linear differential equations in this
linear algebra book. First, a student whose only model for a linear
transformation is a matrix does not see why the abstract approach is
desirable at all. If he is shown that certain differential operators are
linear transformations also, then the point of abstraction becomes much
more meaningful. Second, the kind of student we have in mind must
become familiar with linear differential equations at some stage in his
career, and quite often he is aware of this. We have found in teaching
this course at the University of Wisconsin that the promise that the
subject we are teaching can be applied to differential equations will
motivate some students strongly.

We gratefully acknowledge support from the National Science Founda-
tion under the auspices of the Committee on Undergraduate Programs
in Mathematics for producing some preliminary notes in linear algebra.
These notes were produced by Ken Casey and Ken Kapp, to whom
thanks are also due. Some problems were supplied by Leroy Dickey and
Peter Smith. Steve Bauman has taught from a preliminary version of
this book, and we thank him for suggesting some improvements. We
should also like to thank our publishers, Holt, Rinehart and Winston,
and their mathematics editor, Robert M. Thrall. His remarks and criti-
cisms have helped us to improve this book.

MADISON, WISCONSIN H.S.
JANUARY 1968 G.P.B.
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1.

chapter l

The Algebra

of Matrices

MATRICES: DEFINITIONS

This book is entitled Matrices and Linear Algebra, and
“linear” will be the most common mathematical term used
here. This word has many related meanings, and now we shall
explain what a linear equation is. An example of a linear equa-
tion is 3x; + 2x2 = 5, where x; and x; are unknowns. In
general an equation is called linear if it is of the form

(1.1.1) axi 4+ ax2+ - 4 anx,=b,

where xi, ' -+, X, are unknowns, and ai, -*-, a, and b are
numbers. Observe that in a linear equation, products such as
x1x2 or x3* and more general functions such as sin x; do
not occur.

In elementary books a pair of equations such as

I

1
-3

3x1 — 2x2 + 4x3

(1.1.2)
—x1 + 5x2

is called a pair of simultaneous equations. We shall call such a
pair a system of linear equations. Of course we may have
more than three unknowns and more than two equations.
Thus the most general system of m equations in n unknowns is

1



THE ALGEBRA OF MATRICES
anxi + -+ ai.x. = b
(1.1.3)

amX1 + -+ dmnXa = bm-

The a;; are numbers, and the subscript (i, j) denotes that a;; is the
coefficient of x; in the ith equation.

So far we have not explained what the coefficients of the unknowns
are, but we have taken for granted that they are real numbers such as 2,
v2, or 7. The coefficients could just as well be complex numbers. This
case would arise if we considered the equations

ixi— 24+ Dx>2=1
2x1 + (2 — Dx2 = —i
x1 + 2x3 = 3,

Note that a real number is also a complex number (with imaginary
part zero), but sometimes it is important to consider either all real
numbers or all complex numbers. We shall denote the real numbers by
R and the complex numbers by C. The reader who is familiar with
abstract algebra will note that R and C are fields. In fact, most of our
results could be stated for arbitrary fields. (A reader unfamiliar with
abstract algebra should ignore the previous two sentences.) Although
we are not concerned with such generality, to avoid stating most theorems
twice we shall use the symbol F to stand for either the real numbers R
or the complex numbers C. Of course we must be consistent in any
particular theorem. Thus in any one theorem if F stands for the real
numbers in any place, it must stand for the real numbers in all places.
Where convenient we shall call F a number system.

In Chapter 2 we shall study systems of linear equations in greater
detail. In this chapter we shall use linear equations only to motivate the
concept of a matrix. Matrices will turn out to be extremely useful not
only in the study of linear equations but also in much else.

If we consider the system of equations (1.1.2), we see that the arrays

of coefficients
3 =2 4 1
—1 50 -3



I. MATRICES: DEFINITIONS

convey all the necessary information. Conversely, given any arrays like

-2 3 1 4
5 0 2 34
\Q I 1 0

we can immediately write down a corresponding system of equations

—2x1 + 3x2+ 1x3 =4
5x1 4+ Ox2 + 2x3 = 3%
\/ixl + 1x2 + 1x3 = 0.

Let F stand for the real or complex numbers. With this as motivation
we adopt the following

m (1.1.4) DEFINITION A matrix (over F) is a rectangular array of
elements of F. The elements of F that occur in the matrix 4 are called
the entries of A.

Examples of matrices are

241 1
3 -2 4 i 00
[3 7i 0] 0 -1 —1i]
—1 50 14 0 0
3 1
The general form of a matrix over F is
am aiz " Qi
ax a4 " an
(1.1.5) A= )
aml dm2 " Qmn

where each a;; is an element of F, that is, either a real or complex number.
The horizontal array

lain a2 - aid
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is called the ith row of 4 and we shall denote it by a.. Similarly, the
vertical array

Am;j

is called the jth column of 4, and we shall often denote it by as;. Observe
that g;; is the entry of A4 occurring in the ith row and the jth column.

If the matrix 4 has m rows and n columns it is called an m X n matrix.
In particular, if m = n the matrix is called a square matrix. At times an
n X n square matrix is referred to as a matrix of order n. Two other
special cases are the m X 1 matrix, referred to as a column vector, and
the 1 X n matrix, which is called a row vector. Examples of each special

case are
2 1 2

[ } I:\f:| 2 #i —3% -+ i/5].
5 6i 1

Usually we denote matrices by capital letters (4, B, and C), but some-
times the symbols [a;;], [bxi], and [cp,) are used. The entries of the matrix
A will be denoted by a;;, those of B by b, and so forth.

It is important to realize that

3 2 30 320
1 0 1 2 1 00
are all distinct matrices. To emphasize this point, we make the following

m (1.1.6) DEFINITION Let 4 be an m X n matrix and Ba p X g
matrix. Then 4 = B if and only if m = p, n = g, and

a,-j:bfj, i:l,--',m, j=1,---,n.

Thus for each pair of integers m, n we may consider two sets of
matrices. One is the set of all m X » matrices with entries from the set
of real numbers R, and the other is the set of all m X » matrices with
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entries from the set of complex numbers C. We shall denote the first
set by R . and the second by Cp .. To each theorem about R, . there
often corresponds an analogous theorem that can be obtained by con-
sistently replacing Rn.» by Cu . In conformity with our use of the
symbol F, we shall write F,, » to stand for either Rm,» or G,

We shall now point out how the use of matrices simplifies the notation
for systems of linear equations. Let

X1

3 =2 4 1
A: b= X = X2 |.
—1 50 —3

X3

All the information in (1.1.2) is contained in 4, x, and b. (It is con-
venient here to call x a matrix or column vector even though its entries
are unknowns.) Thus we could, purely symbolically at the moment,
write

Ax = b.
Thus we reduce two linear equations in three unknowns to one matrix

equation. If we have m linear equations in » unknowns, as in (1.1.3),
we can still use the matrix form

(1.1.7) Ax = b,
where

an a2 ain b X1
(1.1.8) A= b = x =

Gor oz - O b o

For the time being, (1.1.7) is merely a symbolic way of expressing the
equations (1.1.3). As another example, let

301 1—i 0 i/2 X1
X2

A=1257 0 Bg =7 b=|—i/2 x o=
X3

—i 1 1 —1 1
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Then Ax = b is shorthand for

Ixp + Ix2+ (0 — Hx3 + Ox4 = é
(2+nn+0n+42—0m—7m=-—é
—ix1 + 1x2 4+ 1x3 — 1x4 = 1.

In Section 3 we shall see that the left side of (1.1.7) may be read as the
product of two matrices. Note that b and x are column vectors; b is a
column vector with m elements and x is a column vector with n ele-
ments. This method of writing the linear equations concentrates attention
upon the essential item, the coeflicient array.

EXERCISES

1. Find the matrices (4, b, x), corresponding to the following systems
' of equations.

@) 2x1 — 3x2= 4 (b) Tx1 +3x2 —x3= 7
4x1 + 2x2 = —6. X1+ x2 = 38
19x; — x3 = 17.
©) — 4w =16 (d) 2x + 3y =6
2x + 3y — 5z+Tw =11 y + 4z =7
z+4+ w= 5. — z4+5w=28
6x + 7w =09.

© G+2Dz1 +(—2+ 4Dz =2+
@G+4D)z14+(=7+ 7Dz =4 — i

(f) 3z1 + (4 — 4i)z2 = 6
214+ Q4 2z =7— i

2. What systems of equations correspond to the following pairs of
matrices?

(a) 32 177 (b)

2 45 3 =1
A=| 4 6|b=]| 9] A= b = .
6 1 2 7 2

-3 \2



