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Preface

Assembly Language for the IBM-PC directly addresses the needs of a college course in
assembly language programming. Of course, there are many assembly languages, so the
goal of this book is to give students an understanding of the following:

® The Intel 8086/8088 assembly language instruction set, directives, macros, and
data allocation statements.

® How programs interact with the operating system, including memory manage-
ment, input-output services.

® Programming methodology, using assembly language as a tool.

® Direct programming of computer hardware.

We begin with machine and operating systems concepts. Then the assembler instruction
set is gradually introduced, along with short program examples. The latter third of the
book contains application programs that take advantage of advanced operating system
functions. We show how to link assembly language subroutines to Pascal and C. A
structured programming style is used throughout the book, to make the programs both
effective and easy to read.

The book is designed to accompany a sophomore-, junior-, or senior-level college
course in assembly language programming. Twelve chapters can usually be covered in a
single semester or in two quarters. I consider the first nine chapters to be the core text,
with the remaining six being individually selectable topics. This book may also be used
for self-study, enhanced by the sample program disk available from the publisher.

As a classroom teacher of assembly language, my goal is to help students approach
problems with the mindset of an assembly language programmer. Ideally, students
learning assembly language acquire the confidence to tackle programming problems at
the systems level, free from the restrictions imposed by high-level languages. In this
book, I integrate presentations of new instructions with short examples showing how
they may be applied to programming problems.

In addition to the hundreds of short examples, Assembly Language for the IBM-PC
contains over 75 ready-to-run programs, each newly written for this book, that demon-
strate instructions or ideas as they are presented in the text. Reference materials such as
guides to DOS interrupts and instruction mnemonics are available at the end of the book.
There is a sizable link library (introduced in Chapter 9), which is expanded throughout
the text and available on disk. A short but useful macro library is also included.

vii



viii

PREFACE

Required Background. The reader should know how to program in at least one struc-
tured computer language, preferably Pascal, Ada, Modula-2, or C. I have personally
used the book with majors in Computer Science, Management Information Systems,
Computer Information Systems, and Electrical Engineering as well as professional pro-
grammers. All programs have been tested using Borland’s Turbo Assembler 2.0 and
Microsoft’s Macro Assembler 5.1.

Operating System Concepts. We have a great advantage when writing assembly lan-
guage programs on a microcomputer, because they communicate directly with DOS.
System integrity or security are of no concern when only one user is involved. I con-
stantly try to remove the mysteries shrouding high-level languages and DOS. Students
acquire more confidence in their programming skills, and the principles learned here
carry over to more advanced courses in operating systems and computer organization.

Enhancements to the Second Edition

First and foremost, the second edition was needed to bring the discussions about hard-
ware and software up to date with the ever-changing computer industry. The following
improvements were made:

® A stronger introduction to programming using DEBUG in the first two chapters.

® Quick-reference guides to Microsoft CodeView and Borland Turbo Debugger.

e Earlier introduction of loops and conditional processing.

® Less space devoted to numeric conversions and file processing.

e A more complete link library (CONSOLE.LIB).

® A detailed explanation of instruction encoding, relating to op codes, the ad-
dressing ModR/M byte, and operands.

e Inline assembly code in Pascal; better coverage of linking assembly routines to
Pascal and C.

e A more thorough explanation of memory segmentation and EXE program struc-

ture.

A better explanation of the BIOS keyboard services.

An include file containing many useful macros.

80286 and 80386 instructions, with a sample program.

Hardware concepts: Differences between the 8088, 8086, 80286, 80386, and

80486 processors. Discussion of real mode, protected mode, and virtual mode

as applied to the 80286 and 80386 processors.

ORGANIZATION AND FORMAT

Presentation Sequence

Chapters 1-8 represent the basic foundation of assembly language, and are most effec-
tive if covered in order. A great deal of effort went into making these chapters flow
smoothly:
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Introduction

Basic concepts, machine language, numbering systems, elements of an as-
sembly language program.

Hardware and Software Architecture

Hardware fundamentals and terminology, registers, system software, stack.

Assembly Language Fundamentals
Data definition, program structure, MOV, XCHG, INC, DEC, ADD, SUB,
addressing modes.

The Macro Assembler
Assembling, linking, operators, expressions

Input-Output Services
Interrupts, DOS (INT 21h) services, video and keyboard BIOS services.

Conditional Processing

Boolean and comparison instructions, conditional jumps and loops, high-level
logic structures.

Arithmetic

Shift and rotate instructions, multidigit arithmetic, multiplication and divi-
sion, ASCII and packed decimal arithmetic.

Numeric Conversions and Libraries
Character translation (XLAT), binary-to-decimal conversion, creating exter-
nal subroutines.

Chapters 9 through 15 may be covered in any order, with one minor restriction: The link
library developed in Chapter 9 (CONSOLE.LIB) is used by nearly all programs in
Chapters 10, 11, 12, and 13. The instructor may wish to supply students with the library
on disk even at the beginning of the course.

9:

10:

11:

12:

13:

14:

String Processing
String storage methods, string primitive instructions, building a library of
string routines.

Macros and Structures

Declaring and calling macros, conditional assembly, using macros to call
procedures, STRUC and RECORD directives, advanced operators and direc-
tives.

Disk Storage
Disk storage fundamentals, directory, file allocation table, system-level file
and directory access.

File Processing

Standard DOS file functions, text file applications, fixed-length record pro-
cessing, applications, random record retrieval and indexing.

High-Level Linking

Linking to Turbo Pascal, built-in assembler (BASM), inline assembly code,
linking to Turbo C.

Advanced Topics—I

Pointers, indirect jumps and calls, interrupt and processor control, defining
segments, COM programs, EXE programs, memory models.
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15: Advanced Topics—II
Real-time clock, instruction timings, bit encoding of instructions, dynamic
memory allocation, interrupt handling, memory-resident programs, 80x87
math co-processor.

FEATURES

Borland TASM and Microsoft MASM. This book takes advantage of the simplified
segment directives (.CODE, .DATA, and .STACK) available in both TASM and
MASM. These directives greatly simplify program development for beginners.

Complete Program Listings. The book contains over 75 assembled and tested pro-
grams. They are on disk, either attached to the book or available from Macmillan. All
source code from the link library (CONSOLE.LIB) and all source code for a macro
library are included on the disk.

Programming Logic. Chapters 6 and 7 emphasize Boolean arithmetic for comparison
and bit manipulation. This includes the AND, OR, XOR, NOT, TEST, shift, and rotate
instructions. Chapters 6 and 12 both show how to create and optimize high-level logic
structures using assembly language, including WHILE, REPEAT, FOR-NEXT, and
IF-ELSE.

Hardware and Operating System Concepts. Chapter 2 introduces basic hardware and
DOS concepts, including registers, flags, stack, memory addressing, and memory map-
ping. Chapter 3 discusses EXE program structure. Chapter 5 shows how assembly lan-
guage interacts with DOS and the BIOS. Chapter 15 demonstrates dynamic memory
allocation, interrupt handling, and memory-resident programs. Chapter 15 provides
information about instruction timings, machine cycles, and bit-encoding of machine
instructions.

Chapter Ending Materials. Each chapter contains valuable teaching materials to rein-
force student learning (such materials are typically missing from trade books on this
subject). The review questions ask both general and specific questions relating to chapter
material. The programming exercises are based on information and skills presented
during the chapter, set at varying levels of difficulty. Selected answers to review ques-
tions are available in an appendix.

Special Programming Tips. Nearly every chapter has a box containing a special topic
called a programming tip. This contains more advanced or specialized information re-
lated to the current chapter material.

Two Chapters on DISK Storage and Files. Chapter 11 covers the details of disk
storage and shows how to manipulate disk drives, directories, file attributes, and the file
allocation table directly. This provides a valuable tool to systems programmers and
application programmers alike, who must go beyond the standard file access methods
available in high-level languages.
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Chapter 12 concentrates on file applications, covering extended DOS functions, text
files, fixed-length records, random access, and indexed record retrieval.

Creating Object Libraries. 1 emphasize a toolbox approach to programming, as early
as Chapter 5. Linking separately compiled modules is introduced in Chapter 8, and
Chapter 9 shows how to use the Microsoft LIB (or Borland TLIB) utility to build a link
library. Chapters 11-12 use and extend the library.

I’'m hoping that students will recognize that a toolbox of assembly routines can be a
valuable resource when writing application programs. It frees one from having to write
the same low-level code over and over again, and it encourages a structured approach to
programming.

Complete Chapter on Macros. Macros are an important topic in any assembly lan-
guage course. They give the student a chance to learn about procedure parameters and to
see how high-level languages build on standard routines. Chapter 13 is devoted to mac-
ros and advanced assembler directives. This chapter might easily be covered immedi-
ately after Chapter 8. Special emphasis is given to showing how simple macros can
streamline procedure calls.

Linking to High-Level Languages. A continuing topic of interest is the linking of
assembly routines to high-level languages. In fact, this is the area where assembler
is used most often. Chapter 15 discusses the most common ways of passing arguments
to subroutines, coordinating identifiers and segment declarations, and linking to Pascal
and C.

Instructional Aids. All program listings and libraries are available on disk from the
publisher. A comprehensive instructor’s manual is also available, containing topic out-
lines, solutions to programming exercises, lecture strategies, and transparency masters
taken from selected figures in the text.

REFERENCE MATERIALS

One of the most important differences between a commercial trade book and a textbook
lies in its special reference materials. I find that students have a difficult time obtaining
the original manuals in most computer labs, so they depend on the following appendixes:

Binary and Hexadecimal Number Tutorial. Appendix A explains binary and
hexadecimal numbers from the ground up. Special emphasis is placed on binary/
decimal, binary/hexadecimal, and decimal/hexadecimal conversions.

CodeView, Turbo Debugger, and DEBUG Tutorials. Appendixes B, C, and D
contain quick-reference guides to DEBUG, CodeView, and Turbo Debugger.
There is also a hands-on tutorial for DEBUG. The DEBUG appendix should be
read before doing the programming exercises in Chapters 2 and 3.

Guide to Companion Diskette. Appendix E lists all programs and files on the
companion diskette. It contains concise documentation for all procedures in the
link library and macro library.
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Assembler References. Appendix F lists all reserved words for the Microsoft and
Borland assemblers, and Appendix G contains a quick reference guide to assem-
bler directives and operators.

DOS and BIOS Functions. Appendix G contains a quick reference to DOS and
BIOS interrupts. One may quickly look up an interrupt, note its standard calling
sequence, and use it in a program. Detailed information on individual interrupts is
also available in Chapters 5, 11, and 12.

Complete Instruction Set Reference. Appendix H contains a listing of the Intel
8086/8088 instruction set. For each instruction, you can see which flags are af-
fected, how the instruction works, and the standard syntax formats.

Answers to Selected Review Questions. Appendix I contains the answers to se-
lected review questions from each chapter.

ASCII Codes and Keyboard Scan Codes. The inside back cover contains a listing
of all ASCII codes. There are also tables containing keyboard scan codes for
special keyboard keys. The front inside cover contains a chart of IBM-PC graphics
characters.
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