ASSEMBLY
LANGUAGE

FOR THE IBM-PC

Assembly Language
for the IBM-PC

Second Edition

KIP R. IRVINE

Miami-Dade Community College-Kendall

PRENTICE HALL
Englewood Cliffs, New Jersey 07632

Library of Congress Cataloging in Publication Data

Irvine, Kip R.,
Assembly language for the IBM-PC/Kip R. Irvine.—2nd ed.
p. cm.
ISBN 0-02-359651-1
1. IBM Personal Computer—Programuming. 2. Assembler language
(Computer program language) I. Title.
QA76.8.1259177 1993
005.265—dc20 92-10002

CIP
Editor(s): John Griffin

Production Supervisor: Ron Harris
Production Manager: Paul Smolenski
Text Designer: Jane Edelstein

Cover Designer: Tom Mack

Cover Art: Tim Alt

This book was set in Times Roman by York Graphics Services.

— © 1993 by Prentice-Hall, Inc.
= A Simon & Schuster Company
Englewood Cliffs, New Jersey 07632

Earlier edition copyright © 1990 by Macmillan Publishing Company

All rights reserved. No part of this book may bé
reproduced, in any form or by any means,
without permission in wiiting from the publisher.

Printed in the United States of America’

10

ISBN 0-02-359k51-1

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto

Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo

Simon & Schuster Asia Pte. Ltd., Singapore

Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

Assembly Language
for the IBM-PC

To Jack and Candy Irvine

Preface

Assembly Language for the IBM-PC directly addresses the needs of a college course in
assembly language programming. Of course, there are many assembly languages, so the
goal of this book is to give students an understanding of the following:

® The Intel 8086/8088 assembly language instruction set, directives, macros, and
data allocation statements.

® How programs interact with the operating system, including memory manage-
ment, input-output services.

® Programming methodology, using assembly language as a tool.

® Direct programming of computer hardware.

We begin with machine and operating systems concepts. Then the assembler instruction
set is gradually introduced, along with short program examples. The latter third of the
book contains application programs that take advantage of advanced operating system
functions. We show how to link assembly language subroutines to Pascal and C. A
structured programming style is used throughout the book, to make the programs both
effective and easy to read.

The book is designed to accompany a sophomore-, junior-, or senior-level college
course in assembly language programming. Twelve chapters can usually be covered in a
single semester or in two quarters. I consider the first nine chapters to be the core text,
with the remaining six being individually selectable topics. This book may also be used
for self-study, enhanced by the sample program disk available from the publisher.

As a classroom teacher of assembly language, my goal is to help students approach
problems with the mindset of an assembly language programmer. Ideally, students
learning assembly language acquire the confidence to tackle programming problems at
the systems level, free from the restrictions imposed by high-level languages. In this
book, I integrate presentations of new instructions with short examples showing how
they may be applied to programming problems.

In addition to the hundreds of short examples, Assembly Language for the IBM-PC
contains over 75 ready-to-run programs, each newly written for this book, that demon-
strate instructions or ideas as they are presented in the text. Reference materials such as
guides to DOS interrupts and instruction mnemonics are available at the end of the book.
There is a sizable link library (introduced in Chapter 9), which is expanded throughout
the text and available on disk. A short but useful macro library is also included.

vii

viii

PREFACE

Required Background. The reader should know how to program in at least one struc-
tured computer language, preferably Pascal, Ada, Modula-2, or C. I have personally
used the book with majors in Computer Science, Management Information Systems,
Computer Information Systems, and Electrical Engineering as well as professional pro-
grammers. All programs have been tested using Borland’s Turbo Assembler 2.0 and
Microsoft’s Macro Assembler 5.1.

Operating System Concepts. We have a great advantage when writing assembly lan-
guage programs on a microcomputer, because they communicate directly with DOS.
System integrity or security are of no concern when only one user is involved. I con-
stantly try to remove the mysteries shrouding high-level languages and DOS. Students
acquire more confidence in their programming skills, and the principles learned here
carry over to more advanced courses in operating systems and computer organization.

Enhancements to the Second Edition

First and foremost, the second edition was needed to bring the discussions about hard-
ware and software up to date with the ever-changing computer industry. The following
improvements were made:

® A stronger introduction to programming using DEBUG in the first two chapters.

® Quick-reference guides to Microsoft CodeView and Borland Turbo Debugger.

e Earlier introduction of loops and conditional processing.

® Less space devoted to numeric conversions and file processing.

e A more complete link library (CONSOLE.LIB).

® A detailed explanation of instruction encoding, relating to op codes, the ad-
dressing ModR/M byte, and operands.

e Inline assembly code in Pascal; better coverage of linking assembly routines to
Pascal and C.

e A more thorough explanation of memory segmentation and EXE program struc-

ture.

A better explanation of the BIOS keyboard services.

An include file containing many useful macros.

80286 and 80386 instructions, with a sample program.

Hardware concepts: Differences between the 8088, 8086, 80286, 80386, and

80486 processors. Discussion of real mode, protected mode, and virtual mode

as applied to the 80286 and 80386 processors.

ORGANIZATION AND FORMAT

Presentation Sequence

Chapters 1-8 represent the basic foundation of assembly language, and are most effec-
tive if covered in order. A great deal of effort went into making these chapters flow
smoothly:

PREFACE ix

Introduction

Basic concepts, machine language, numbering systems, elements of an as-
sembly language program.

Hardware and Software Architecture

Hardware fundamentals and terminology, registers, system software, stack.

Assembly Language Fundamentals
Data definition, program structure, MOV, XCHG, INC, DEC, ADD, SUB,
addressing modes.

The Macro Assembler
Assembling, linking, operators, expressions

Input-Output Services
Interrupts, DOS (INT 21h) services, video and keyboard BIOS services.

Conditional Processing

Boolean and comparison instructions, conditional jumps and loops, high-level
logic structures.

Arithmetic

Shift and rotate instructions, multidigit arithmetic, multiplication and divi-
sion, ASCII and packed decimal arithmetic.

Numeric Conversions and Libraries
Character translation (XLAT), binary-to-decimal conversion, creating exter-
nal subroutines.

Chapters 9 through 15 may be covered in any order, with one minor restriction: The link
library developed in Chapter 9 (CONSOLE.LIB) is used by nearly all programs in
Chapters 10, 11, 12, and 13. The instructor may wish to supply students with the library
on disk even at the beginning of the course.

9:

10:

11:

12:

13:

14:

String Processing
String storage methods, string primitive instructions, building a library of
string routines.

Macros and Structures

Declaring and calling macros, conditional assembly, using macros to call
procedures, STRUC and RECORD directives, advanced operators and direc-
tives.

Disk Storage
Disk storage fundamentals, directory, file allocation table, system-level file
and directory access.

File Processing

Standard DOS file functions, text file applications, fixed-length record pro-
cessing, applications, random record retrieval and indexing.

High-Level Linking

Linking to Turbo Pascal, built-in assembler (BASM), inline assembly code,
linking to Turbo C.

Advanced Topics—I

Pointers, indirect jumps and calls, interrupt and processor control, defining
segments, COM programs, EXE programs, memory models.

x PREFACE

15: Advanced Topics—II
Real-time clock, instruction timings, bit encoding of instructions, dynamic
memory allocation, interrupt handling, memory-resident programs, 80x87
math co-processor.

FEATURES

Borland TASM and Microsoft MASM. This book takes advantage of the simplified
segment directives (.CODE, .DATA, and .STACK) available in both TASM and
MASM. These directives greatly simplify program development for beginners.

Complete Program Listings. The book contains over 75 assembled and tested pro-
grams. They are on disk, either attached to the book or available from Macmillan. All
source code from the link library (CONSOLE.LIB) and all source code for a macro
library are included on the disk.

Programming Logic. Chapters 6 and 7 emphasize Boolean arithmetic for comparison
and bit manipulation. This includes the AND, OR, XOR, NOT, TEST, shift, and rotate
instructions. Chapters 6 and 12 both show how to create and optimize high-level logic
structures using assembly language, including WHILE, REPEAT, FOR-NEXT, and
IF-ELSE.

Hardware and Operating System Concepts. Chapter 2 introduces basic hardware and
DOS concepts, including registers, flags, stack, memory addressing, and memory map-
ping. Chapter 3 discusses EXE program structure. Chapter 5 shows how assembly lan-
guage interacts with DOS and the BIOS. Chapter 15 demonstrates dynamic memory
allocation, interrupt handling, and memory-resident programs. Chapter 15 provides
information about instruction timings, machine cycles, and bit-encoding of machine
instructions.

Chapter Ending Materials. Each chapter contains valuable teaching materials to rein-
force student learning (such materials are typically missing from trade books on this
subject). The review questions ask both general and specific questions relating to chapter
material. The programming exercises are based on information and skills presented
during the chapter, set at varying levels of difficulty. Selected answers to review ques-
tions are available in an appendix.

Special Programming Tips. Nearly every chapter has a box containing a special topic
called a programming tip. This contains more advanced or specialized information re-
lated to the current chapter material.

Two Chapters on DISK Storage and Files. Chapter 11 covers the details of disk
storage and shows how to manipulate disk drives, directories, file attributes, and the file
allocation table directly. This provides a valuable tool to systems programmers and
application programmers alike, who must go beyond the standard file access methods
available in high-level languages.

PREFACE xi

Chapter 12 concentrates on file applications, covering extended DOS functions, text
files, fixed-length records, random access, and indexed record retrieval.

Creating Object Libraries. 1 emphasize a toolbox approach to programming, as early
as Chapter 5. Linking separately compiled modules is introduced in Chapter 8, and
Chapter 9 shows how to use the Microsoft LIB (or Borland TLIB) utility to build a link
library. Chapters 11-12 use and extend the library.

I’'m hoping that students will recognize that a toolbox of assembly routines can be a
valuable resource when writing application programs. It frees one from having to write
the same low-level code over and over again, and it encourages a structured approach to
programming.

Complete Chapter on Macros. Macros are an important topic in any assembly lan-
guage course. They give the student a chance to learn about procedure parameters and to
see how high-level languages build on standard routines. Chapter 13 is devoted to mac-
ros and advanced assembler directives. This chapter might easily be covered immedi-
ately after Chapter 8. Special emphasis is given to showing how simple macros can
streamline procedure calls.

Linking to High-Level Languages. A continuing topic of interest is the linking of
assembly routines to high-level languages. In fact, this is the area where assembler
is used most often. Chapter 15 discusses the most common ways of passing arguments
to subroutines, coordinating identifiers and segment declarations, and linking to Pascal
and C.

Instructional Aids. All program listings and libraries are available on disk from the
publisher. A comprehensive instructor’s manual is also available, containing topic out-
lines, solutions to programming exercises, lecture strategies, and transparency masters
taken from selected figures in the text.

REFERENCE MATERIALS

One of the most important differences between a commercial trade book and a textbook
lies in its special reference materials. I find that students have a difficult time obtaining
the original manuals in most computer labs, so they depend on the following appendixes:

Binary and Hexadecimal Number Tutorial. Appendix A explains binary and
hexadecimal numbers from the ground up. Special emphasis is placed on binary/
decimal, binary/hexadecimal, and decimal/hexadecimal conversions.

CodeView, Turbo Debugger, and DEBUG Tutorials. Appendixes B, C, and D
contain quick-reference guides to DEBUG, CodeView, and Turbo Debugger.
There is also a hands-on tutorial for DEBUG. The DEBUG appendix should be
read before doing the programming exercises in Chapters 2 and 3.

Guide to Companion Diskette. Appendix E lists all programs and files on the
companion diskette. It contains concise documentation for all procedures in the
link library and macro library.

PREFACE

Assembler References. Appendix F lists all reserved words for the Microsoft and
Borland assemblers, and Appendix G contains a quick reference guide to assem-
bler directives and operators.

DOS and BIOS Functions. Appendix G contains a quick reference to DOS and
BIOS interrupts. One may quickly look up an interrupt, note its standard calling
sequence, and use it in a program. Detailed information on individual interrupts is
also available in Chapters 5, 11, and 12.

Complete Instruction Set Reference. Appendix H contains a listing of the Intel
8086/8088 instruction set. For each instruction, you can see which flags are af-
fected, how the instruction works, and the standard syntax formats.

Answers to Selected Review Questions. Appendix I contains the answers to se-
lected review questions from each chapter.

ASCII Codes and Keyboard Scan Codes. The inside back cover contains a listing
of all ASCII codes. There are also tables containing keyboard scan codes for
special keyboard keys. The front inside cover contains a chart of IBM-PC graphics
characters.

ACKNOWLEDGMENTS

I want to express my warm thanks to the many people at Macmillan who contributed to
the book’s preparation, particularly John Griffin, Acquisition Editor, and Ron Harris,
Production Editor. Special thanks are due the following groups and individuals who
contributed to the book:

Barry Brosch, Bruce DeSautel, and Richard White of the Computer Information Sys-
tems department at Miami-Dade Community College (South Campus) reviewed individ-
ual chapters of the first edition and offered valuable suggestions.

Richard A. Beebe of Simpson College (Indianola Iowa) field tested the first edition in
his class during summer 1988.

Bob Galivan wrote a marvelous instructor’s manual, which really helps when plan-
ning lectures. Bob Galivan and George Kamenz proofread the manuscript, catching
many mistakes.

Members of the Borland and Microsoft Compuserve forums donated information on
MASM, TASM, and DOS.

Microsoft Corporation and Borland International generously donated software.

I would also like to thank the select group of reviewers of the First Edition who
offered their suggestions: Richard A. Beebe, Simpson College; John V. Erhart, North-
east Missouri State University; and Michael Walton, Miami-Dade Community College-
North.

Reviewers of the Second Edition include Gonshin Liu, University of Bridgeport,
S. K. Sachdev, Eastern Michigan University; Douglas W. Knight, University of South-
ern Colorado; and Don Retzlaff, University of North Texas.

K.R.I

Assembly Language
for the IBM-PC

Contents

1 Introduction

1.1

1.2

1.3

1.4

— —
o\

Introducing Assembly Language 1
Assembly Language Applications 3
Machine Language 3

Data Representation 4
Binary Numbers 4
Converting Binary to Decimal 7
Hexadecimal Numbers 7
Signed Numbers 8
Character Storage 9

Assembly Language: An Introduction
Assembly Language Instructions 10
A Sample Program 11
DEBUG Commands 13
The PAGE.COM Program 14

Basic Elements of Assembly Language
Constant 15
Statement 17
Name 18

Sample HELLO Program 19

Review Questions 20

2 Hardware and Software Architecture

10

15

22

2.1

2.2

Components of a Microcomputer 22

Video Display 22

Keyboard 23

Disk Drives 23

System Unit 23

Intel Microprocessor Family 25
System Architecture 26

Central Processing Unit (CPU) 26

xiii

xiv

CONTENTS

Registers 28

Flags 31

Stack 32

Instruction Execution Cycle 35
2.3 System Software and Memory

Memory Architecture 35

DOS Initialization 36

Video Display 37

Read-Only Memory (ROM) 38

Address Calculation 38

Memory Addressing Using Registers
2.4 Review Questions 39
2.5 Programming Exercises 41

35

3 Assembly Language Fundamentals .

39

46

3.1 Data Definition Directives 46
Define Byte (DB) 47
Define Word (DW) 49
Define Doubleword (DD) 51
DUP Operator 51
3.2 Data Transfer Instructions 52
MOV Instruction 52
Offsets 53
XCHG Instruction 55
Stack Operations 29
3.3 Arithmetic Instructions 56
INC and DEC Instructions 57
ADD Instruction 57
SUB Instruction 58
Flags Affected by ADD and SUB
3.4 Addressing Modes 60
Register Operand 61
Immediate Operand 61
Direct Operand 61
Indirect Operand 62
Based and Indexed Operands 63
Base-Indexed Operand 64
Base-Indexed with Displacement
Summing a List of Numbers 65
3.5 Program Structure 66
Memory Models 67
Review Questions 69
Programming Exercises 73

w W
~N N

58

64

CONTENTS xv

4 The Macro Assembler 76

4.1 The Assembly Process 76
A Sample Program 77
Assemble the Program 78
Link and Run the Program 79
4.2 Related Files 80
Listing File 80
Map File 81
Batch Files 82
4.3 Equates 83
The Equal-Sign Directive 83
EQU Directive 84
4.4 Operators and Expressions 85
Arithmetic Operators 85
Boolean Operators 86
OFFSET, PTR, and LABEL 86
Operands with Displacements 88
Other Assembler Operators 89
4.5 Transfer-of-Control Instructions 91
JMP Instruction 91
LOOP Instruction 93

4.6 Using the 80386 Processor 95
4.7 Debugging Workshop 96
Operand Sizes and Addressing Errors 97
4.8 Review Questions 98
4.9 Programming Exercises 103
5 Input-Output Services 106

5.1 Procedures 107
PROC and ENDP Directives 107
Sample Program: SUBS.ASM 107
Near and Far Procedures 108

5.2 Software Interrupts 111
INT Instruction 113
Device Names 115

5.3 DOS Function Calls 116
01h: Console Input With Echo 117
02h: Character Output 117
O5h: Printer Output 117
06h: Direct Console Input-Output 118
07h: Direct Console Input 119
08h: Console Input Without Echo 119
09h: String Output 119

CONTENTS

5.4

5.
5

5
.6

0Ah: Buffered Console Input 119

OBh: Get Console Input Status 121

OCh: Clear Input Buffer, Invoke Input Function

BIOS-Level Keyboard Input (INT 16h) 121

ASCII Control Characters 123
BIOS-Level Video Control (INT 10h) 123

Displays, Modes, and Attributes 124

127h: Set Video Mode 127

01h: Set Cursor Lines 128

02h: Set Cursor Position 129

03h: Get Cursor Position 130

05h: Set Video Page 130

06h, 07h: Scroll Window Up or Down 131

08h: Read Character and Attribute 132

09h: Write Character and Attribute 133

0OAh: Write Character 133

OFh: Get Video Mode 133

11h: Load Default ROM Fonts 134
Review Questions 134
Programming Exercises 137

6 Conditional Processing

121

141

6.1

6.2

6.3

6.4

o o
N

Boolean and Comparison Instructions 141
The Flags Register 141
AND Instruction 142
OR Instruction 144
XOR Instruction 145
NOT Instruction 146
NEG Instruction 146
TEST Instruction 147
CMP Instruction 147
Conditional Jumps 148
Conditional Jump Instruction 149
Applications Using Conditional Jumps 151
Conditional Loops 157
LOOPZ (LOOPE) Instruction 157
LOOPNZ (LOOPNE) Instruction 158
High-Level Logic Structures 159
IF Statement 160
WHILE Structure 161
REPEAT . . . UNTIL Structure 163
CASE Structure 164
Offset Table 165
Review Questions 166
Programming Exercises 169

CONTENTS

7 Arithmetic

172

7.1

12

7.3

=S
W

7.6

7.7

~N 3
O oo

Shift and Rotate Instructions 173
SHL Instruction 173
SHR Instruction 175
SAL and SAR Instructions 176
ROL Instruction 176
ROR Instruction 177
RCL and RCR Instructions 178
Sample Applications 179
Shifting Multiple Bytes 179
Multiplication and Division 180
Display a Number in ASCII Binary
Isolate a Bit String 182
Multiple Addition and Subtraction
ADC Instruction 183
SBB Instruction 185
Signed Arithmetic 186
Multiplication and Division 187
MUL and IMUL Instructions 187
DIV and IDIV Instructions 189
Divide Overflow 190
ASCII Arithmetic 191
AAA Instruction 193
AAS Instruction 195
AAM Instruction 196
AAD Instruction 197
Packed Decimal Arithmetic 197
DAA Instruction 198
DAS Instruction 198
BCD Addition Example 198
Review Questions 201
Programming Exercises 204

8 Numeric Conversions and Libraries

181

183

208

8.1

8.2

8.3

Character Translation Using XLAT
The XLAT Instruction 209
Character Filtering 210
Character Encoding 210

Binary to ASCII Conversion 213
The WRITEINT Procedure 214

ASCII to Binary Conversion 218
The READINT Procedure 218

209

