Lecture Notes In

Computer Science

Edited by G. Goos and J. Hartmanis

157

Ole Osterby
Zahari Zlatev

| Dite Mothods

~ for Sparse Matrices

8

Springer-Verlag | ilig
Rerlin Heidelbera New York Tokvo

Lecture Notes In
Computer Science

Edited by G. Goos and J. Hartmanis

197

Ole Qsterby
Zahari Zlatev

Direct Methods
for Sparse Matrices

SpringerVerlag
Berlin Heidelberg New York Tokyo 1983

Editorial Board
D. Barstow W.Brauer P. Brinch Hansen D. Gries D. Luckham
C.Moler A.Pnueli G. Seegmililler

Authors

Ole QOsterby
Computer Science Department, Aal
DK 8000 Aarhus, Denmark

Zahari Zlatev

Air Pollution Laboratory ,
Danish Agency of Environmental Pr
Rise National Laboratory

DK 4000 Roskilde, Denmark

CR Subject Classifications (1982): G.1.3

ISBN 3-540-12676-7 Springer-Verlag Be
ISBN 0-387-12676-7 Springer-VerIag New 1urk melueiuery oenn 1unyu

This work is subject to copyright. All rights are reserved, whether the whole or part of the material
is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting,
reproduction by photocopying machine or similar means, and storage in data banks. Under

§ 54 of the German Copyright Law where copies are made for other than private use, a fee is
payable to “Verwertungsgesellschaft Wort", Munich.

© by Springer-Verlag Berlin Heidelberg 1983
Printed in Germany

Printing and binding: Beltz Offsetdruck, Hemsbach/Bergstr.
2145/3140-543210

Preface

The mathematical models of many practical problems lead to systems
of linear algebraic equations where the coefficient matrix is large
and sparse. Typical examples are the solutions of partial differen-
tial equations by finite difference or finite element methods but

many other applications could be mentioned.

When there is a large proportion of zeros in the coefficient matrix
then it is fairly obvious that we do not want to store all those
zeros in the computer, but it might not be guite so obvious how to
get around it. We shall first describe storage techniques which are
convenient to use with direct solution methods, and we shall then
show how a very efficient computational scheme can be based on Gauss-
ian elimination and iterative refinement.

A serious problem in the storage and handling of sparse matrices is
the appearance of fill-ins, i.e. new elements which are created in
the process of generating zeros below the diagonal. Many of these
new elements tend to be smaller than the original matrix elements,
and if they are smaller than a certain quantity which we shall call
the drop tolerance we simply ignore them. In this way we may pre-
serve the sparsity quite well but we probably introduce rather large
errors in the LU decomposition to the effect that the solution be-
comes unacceptable. In order to retrieve the accuracy we use itera-
tive refinement and we show theoretically and with practical experi-

ments that it is ideal for the purpose.

Altogether, the combination of Gaussian elimination, a large drop
tolerance, and iterative refinement gives a very efficient and compe-
titive computational scheme for sparse problems. For dense matrices
iterative refinement will always require more storage and computation
time, and the extra accuracy it yields may not be enough to justify
it. For sparse problems, however, iterative refinement combined with
a large drop tolerance will in most cases give very accurate results

and reliable error estimates with less storage and computation time.

v

A short description of the Gaussian elimination process is given in
chapter 1. Different storage algorithms for general sparse matrices
are discussed in chapter 2. Chapter 3 is devoted to the use of pivo-
tal strategies as a tool for keeping the balance between sparsity
and accuracy. The possibility of using an iterative refinement proc-
ess in connection with the Gaussian elimination is the topic of
chapter 4.

In chapter 5 we introduce a general computational scheme which in-
cludes many well-known direct methods for linear equations and for
overdetermined linear systems as special cases. We also demonstrate
how the above techniques can be generalized to linear least squares
problems. Thus, we show that the theory of most of the direct meth-
ods can be studied from a common point of view and that the algo-
rithms described in the previous chapters are applicable not only
in connection with Gaussian elimination but also for many other
methods. A particular algorithm (the Gentleman - Givens orthogona-
lization) is discussed in detail in the second part of chapter 5 as
an illustration of the above statements.

The algorithms described in chapters 2 - 4 have been implemented in
a package for the solution of large and sparse systems of linear al-
gebraic equations. This package, Y12M, is included in the standard
library at RECKU (the Regional Computing Centre at the University of
Copenhagen). The subroutines of package Y12M with full documenta-
tion and with many test-programs are available at the usual cost
(for the magnetic tape, machine time, shipment, etc.). Requests
should be addressed to J. Wasniewski, RECKU, Vermundsgade 5, DK -
2100 Copenhagen. It should be mentioned that the subroutines are
written in FORTRAN. Both double and single precision versions are
available. No special features of the computer at the disposal at
RECKU (UNIVAC 1100/82) have been exploited and no machine-dependent
constants are used. Thus the package is portable and will work with-
out any changes on many large computers. This has been verified by
running the subroutines of the package on three different computers:
a UNIVAC 1100/82 computer at RECKU, an IBM 3033 computer at the
Northern Europe University Computing Centre (NEUCC) and a CDC Cyber
173 computer at the Regional Computing Centre at Aarhus University
(RECAU) .

Vv

The package Y12M also includes subroutines for estimation of the con-
dition number of a sparse matrix. The subroutines can be called when
the LU decomposition is calculated and provide a relatively inexpen-
sive but still reliable measure of the sensitivity of the results to
round-off errors.

A full documentation of the subroutines from package Y12M with a
brief description of the basic ideas applied in the implementation is
given in a previous volume of this series (see Z. Zlatev, J. Wasniewski
and K. Schaumburg: "Y12M - Solution of Large and Sparse Systems of
Linear Algebraic Equations", Lecture Notes in Computer Science, Vol.
121, Springer, Berlin-Heidelberg-New York, 1981).

Decimal notation is used for the numbering of sections and chapters.
Thus the third section of chapter 5 is numbered 5.3. The 15th numbered
equation in section 3 of chapter 5 is numbered (3.15) and is referenced
in another chapter by (5.3.15). Tables and figures are numbered in each
chapter. Thus the 7th table or figure in chapter 1 is numbered 1.7. A

similar numbering system is used for theorems, corollaries, remarks,
etc.

We would like to express our thanks to Angelika Paysen who with great
patience and expert skill typed the manuscript.

Contents

Preface

1. Introduction
1.1 Gaussian elimination @itiinreireeeennennnens 1
1.2 Sparse MatriCes viiieeeererenoaconesosaannans 4
1.3 Test Matrices ...t eiitiernnrecesencnonnencoennns 6
1.4 An exXample . ..i.uiteiecncecnsenessesosesnsssnsnsonons 11
1.5 Contents of chapters 2-5iciiieterencennnnes 13

2. Storage Techniques

N NN NN NN
.
W N O e W NN

Input requirements ccicciccitiiectcnnetoanan 14
Reordering the structureciiceiencenacens 15
The elimination pProcess .c...ierenecsecnnnncensnans 22
Storage of fill-ins ciitiiictnrentianancnaanse 25
Garbage CcOllecCtiOnNS ... ereeccncsncesssccnscoconas 30
On the storage of matrix L ceiciiireneccnnass 34
Classification of problems cccvieeccencocenans 35
A comparison of ordered and linked lists 38

Pivotal Strategies

Why interchange rows and columns? c.ccece-. 42
The Markowitz strategy ccieeceinecennccnnnnss 44
The generalized Markowitz strategy (GMS) 45

The improved generalized Markowitz strategy (IGMS) 48
Implementation of the pivotal strategy 54
Other strategiescciciiiiiiereccacsesrecnnnnns 57

Vil

4. Iterative Refinement

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10

Convergence of iterative refinement ,..............
The drop tolerance cetesesseecccssenes st sesanncsseas
Storage compariSONsS ...c.cceccescsassccssscccncnssns
Computing time c.ciiciiencceconcscscscocsansasan
Choice of drop tolerance and stability factor
When and how to use iterative refinement
Least squares problems cccecienccencccnnncacas
Condition number estimation R
Robustness and reliabilityciieiieniccnaccnnn .
Concluding remarks on IR and T sesceessesannone .

5. Other Direct Methods

Linear least squares problemsccccessccscncens
The general k-stage direct method
Special cases of the general method
Generalized iterative refinement
Orthogonal transformationsccicencecccacnans
Pivotal strategy ccissceseissusicnnssoissmanedsinassss
A 2-stage method based on orthogonal transformations

Numerical resultSciceccncancrassssssescsnancans

Codes for sparse matrix problemscsceeccsccnns

REfEYENTES it ario i@ dainiw @ nid @a @i 656 505 6@ 5 08888 & bod i 4o bommim o

59
62
63
67
72
75
78
82
83
86

Chapter 1: Introduction

1.1 Gaussian elimination

Many practical problems lead to large systems of linear algebraic
equations

(1.1) Ax = b,

where n€ I:I, A€ ﬁnxn and b€ f{m”

and x € ﬁmﬂ

are given, with rank(A) = n,

is to be computed.

In this book we shall discuss the solution of (1.1) by means of so-
called direct methods and begin with the well known Gaussian elimina-

tion. The elimination process will be carried out in n-1 stages

alk+1) (k) (k)

(1.2) =L <A ' (k=1(1)n-1)
starting with A(1) = A. The lower right (n-k+1) x (n-k+1) subma-
trix of A(k) is denoted Ak and its elements are denoted aig),
(i,j=k(1)n). For the elements of Ak+1 we have the formula
(k+1) _ _(k) _ _(k) _(k) (k) s s
(1.3) ayy = a.lj ajy akj /akk' i,j=k+1(1)n.
L(k) is an elementary unit lower triangular matrix with elements
(k) _ o 3
Ly =1 (1=1(1)n);
(k) _ __ (k) (k) . .
(1.4) iy = —ajx /akk v (i =k+1(1)n);

otherwise 0.

The end result of the elimination is the upper triangular matrix

U = A(n) and the process is equivalent to a triangular factorization

(1.5) A=L-U,
where

(1.6) L= @i, . L)

The elements of L and U are thus given by

[L () L)

a1 292 13 1n
(2) (2) (2)
222 223 22n
(1.7) U = ,
{ a0
nn
and
~
1 h
(1)
154 L
0
(1) _(2)
134 1357 1
(1.8) L = . .
(M) .. _ (=1
L g 1o L. n-1 1J

In order for this factorization to be successful it is necessary that
all the denominators in (1.3), a}it), be different from 0. Moreover,
to ensure reasonably stable computations it is to be desired that the
correction terms in (1.3), aj(_]]:) . a}?;)/a]((]]:) be reasonably small. This
is usually accomplished by interchanging rows and/or columns and thus
](JJ?)/ a}({i) | £1. We shall return to this
topic in section 3.1 and for the moment just prepare ourselves for the

requiring that |li]}:)| <1 or |a

row and column interchanges which transform (1.1) into
T

(1.9) PAQ(Q x) = Pb,

where P and Q are permutation matrices.

The elimination or factorization (1.5) now becomes

(1.10) LU =PAQ + E,

where L and U now denote the computed triangular matrices and E
is a perturbation matrix which takes care of the computational errors,

among other things.

An approximation X to the solution x is now computed by substitu-

tion:
(1.11) X, = QU 'L 'Pb,

and we set

(1.12) % = X,

Definition 1.1 X as given by (1.12) is called the direct solution
(DS) . |

Remark 1.2 Even if the computations in (1.11) are performed without
errors we may still have X #x if E =0 in (1.10). [|

We would expect that the process of elimination and substitution would
lead to a 'good' solution if the elements of E are small. This is often
the case but we have no a priori guarantee of this, and we don't even
have any a priori guarantee that the elements of E will be small if we
use only row-interchanges. Therefore the following 'refining' process

can be useful.

Compute for i =1,2, ...,ag-1

(1.13) ri =b_AXiI

(1.14) a. =ou 't 'pr
. i il

(1.15) Xigq = Xi‘kdi’

and set

(1.16) X = x_.

Definition 1.3 The process described by (1.13) - (1.15) is called
iterative refinement. X as given by (1.16) is called the itera-
tively refined solution (IR). [|

Remark 1.4 Under certain conditions the process (1.13) - (1.15) is
convergent and xi-ex(i—+m). In this case x =%y +Z°;=1 di and
di—*O. If the series converges swiftly IIdill can be used as an
estimate of the error Hx-—xiH. 1

If convergent the iterative refinement will provide a better solution
and a reasonable error estimate. The price we have to pay for this is
extra storage (because a copy of A must be retained) and extra com-
puting time (for the process (1.13) - (1.15)). The following table
gives the storage and computing time for DS and IR

DS IR
2 2
Storage n~ +0(n) 2n” +0(n)
Time %n3+n2+0(n) %n3+ (2q—1)n2+0(n)
Table 1.1

Comparison of storage and time with DS and IR for dense matrices.
The computation time is measured by the number of multiplications.

1.2 Sparse matrices

Until now we have tacitly assumed that we require space and time to
treat all the n’ elements of matrix A (A 1is dense). Table 1.1
shows that in this case both storage and time increase rapidly with

n and that IR 1is always more expensive than DS in both respects.

In many applications, however, A 1is sparse, i.e. a large proportion
of the elements of A are 0, and we shall in this book describe

special techniques which can be used to exploit this sparsity of A.

The border-line between dense and sparse matrices is rather fluent,

but we could 'define' a matrix to be sparse if we can save space and/or

time by employing the sparse matrix techniques to be described in this
book.

Consider the basic formula in the factorization process (1.2)

(2.1) LD L) k) (k) (k) (k)

i3 i3 ik " %5 7 %%kx (agy” *0)

i,j = k+1(1)n, %k = 1(1)n-1.

The computation is clearly simplified if one or more of the quantities

(k))

involved (except Ay is 0.

A sparse matrix technique is based on the following main principles:

A) Only the non-zero elements of matrix A are stored.

B) We attempt to perform only those computations which lead to
(k)
a

changes, i.e. we only use formula (2.1) when ik * 0 and
a(k) =0
kj -

C) The number of 'new elements' (fill-ins) is kept small. A new
element is generated when aiﬁ) =0 and a;§+1) z0.

Before we continue we shall introduce some notation and terminology.

By an element of matrix A we mean a non-zero element of the matrix.

The rest of matrix A are called zeros and are treated as such.

n denotes the number of unknowns (columns).

m denotes the number of equations (rows).

(We shall only treat the case m=#n in chapter 5.)
NZ denotes the number of elements of matrix A.

NN is the length of the one-dimensional array A which is used
to hold the elements (NN 2 NZ).

COUNT is the maximum number of elements (including fill-ins) kept

in array A during the elimination process (NN 2 COUNT).

T is the drop tolerance (see the end of section 1.4).

We shall see that the use of sparse matrix techniques will change the
contents of table 1.1 completely. More specifically, the computation
time and the storage will not grow as fast with n, the storage
needed for IR will not always be larger than for DS (because we
introduce the drop tolerance), and the computation time will often be
smaller for IR than for DS with the techniques which we are going

to describe in the following chapters.

1.3 Test matrices

More often than not assertions and suggestions about sparse matrix
techniques cannot be proved mathematically. We shall often have to
rely on practical experiments to show that one technique is better
than another - or to see under which circumstances it is better. For
this purpose several classes of test matrices have been constructed,
either as typical examples or generalizations of practically occurring
matrices, or as nasty examples designed to make life difficult for

sparse matrix programs.

We shall in this section introduce some of those test matrices which

we are going to use throughout the text.

Test matrices of class D(n,c) are nxn matrices with 1 in the diago-

nal, three bands at the distance ¢ above the diagonal (and reappearing
cyclicly under it), and a 10x 10 triangle of elements in the upper

right-hand corner.

More specifically:

a; 4 = 1, i=1(1)n;

ai,i+c = i+1, i=1(1)n-c, ai,i—n+c =i+1, i = n-c+1(1)n;
ai,i+c+1 = -i, i=1(1)n-c-1, ai,i-n+c+1 ol s i = n-c(1)n;
ai,i+c+2 = 16, i =1(1)n-c-2, ai,i—n+c+2 =16 i = n-c-1(1)n;
a 100 « j, i = 1(1)11-3, J = 1(1)10;

i,n-11+i+j

for any n 2 14 and 1 £ c¢c £ n-13.

By varying n and c¢ we can obtain matrices of different sizes and
sparsity patterns. In Fig. 1.2 we show the sparsity pattern of matrix
D(20,5).

X 0 000X XXO0OO0X XXIXXXXZXZXZX
O X0 00OO0OXXXO0OO0OXXXIXIXXXXZX
O 0O X0 000X XXO0OO0XXXXZXZXZXZX
O 00X O0OO0O0OO0OXXXO0O0X XXX XXX
O 000X O000O0XXXO0O0XXXXZXZX
O O 0O 00X O0O0OO0OO0OXXXO0O0XZXZXZXZX
O 00000 XO0OO0O0O0OX XXO0O0XXZXX
O 000000 X000O0OXXXO0O0XZXXZX
O 0000000 X O0O0O0O0OXX Xo0o0XZX
OO 0000000 XO0O00OO0OXXXo00X
O 0O O0O0OO0OO0OO0OO0OO0OO0OXO0O0OO0OO0OXXZXo00O0
OO0 000000000 XO0O0OO0OO0OXXXO
O 0000000000 O0OXO0O0O0OO0OXZIXX
X 000000000 O0OO0OO0OXO0O0O0O0XX
X X 000000 O0OO0OO0OO0OO0OO0OXO0OO0OOoOOo0KX
X X X00O0OO0OOOOOOO0OOO0OXOoOOoOOoOo
O X XX O0OO0O0O0OO0OO0OOOOO0OOO0OZXOo0Oo0oOo
OO0 X XX O00O0OO0OO0OO0OOOOOOOoOXOoOo
O 00X XX O000O0OO0OO0OOOO0OO0OO0OOoOXOo
O 0O 00X X XO0OO0OO0OO0OO0OO0OO0OOO0OOOoOOoKX
Fig. 1.2

Sparsity pattern of matrix D(20,5)

Test matrices of class E(n,c) are symmetric, positive definite, nxn

matrices with 4 in the diagonal and -1 in the two sidediagonals and
in two bands at the distance ¢ from diagonal. These matrices are
rather similar to matrices obtained from using the five-point formula

in the discretization of elliptic partial differential equations.

a;; = 4, i=1(1)n;
(3.2) ai 541 = 2441, -1 i=1(1)n-1;
1,000 = @lrg,d T T i=10)n-c;

In Fig. 1.3 we show the matrix E(10,4)

4-10 0-1 0 0 0
-1 4-1 0 0-1 0 0
0-1 4-19 0 0-1 O
0 0-1 4-1 0 0 -1
-1 0 0-1 4-1 0 0 -1
0-1 0 0-1 4-1 0 0 -1
0o 0-9 0 0-1 4-1 0 O
0 0 0-1 0 0-1 4-1 0
0 0 0 0-1 0 0-1 4 -1
0 0 0 0 0-1 0 O0-1 4

o O O o
o O O o ©

Fig. 1.3

The matrix E(10,4)

Test matrices of class F2(m,n,c,r,a) are mxn matrices which can

be viewed as generalizations of the matrices of class D but with a
lower left 10 x 10 triangle of elements added. r-1 is the width of
a band located at a distance c¢ from the main diagonal (and reappear-
ing cyclicly under it). The elements are given by

=1, i 1 (1) m;

a. .
i,i-gn

=(—1)s-s-i, s

B Femrto e 1(1) r-1, i=1(1)m;

where g=0,1,..., [m/n] is chosen such that 1<i-gns<n resp.
1<i-gn+c+s<n, and [m/n] is the smallest integer greater than

or equal to m/n;

a = 3-aq, i=1(M11-53, 3 =1¢1)10;

i,n-11+i+j

1 (1) 11 -1, i=1(1)10;

P
~
Q

~
(]
]

Cn-11+i+3,7

where m2nz222, 11M<¢c<n-11, 2<r <min(c-9, n-20), and az1.

The smallest matrices of this class are thus F2(22, 22,11, 2, o).

In Fig. 1.4 and 1.5 we show the sparsity pattern of matrices
F2(26, 26, 12, 3, o) and F2(80, 30, 12, 4, a).

XoXM M X X X X X X X O X X 00 0O 0 00 0 0O 0 0 0 0 X
X X X X M X X X X O X X 6 0O 0O0OO OO 0O 0O 0 0 0 X ©
X X X X XK X X X O X X O 0O 0O OO OO O 0O O 0 0 »x o0 o
WM X X X X X O X X O 0O 00 0O 0O 0O 0O 0 0O 0 0 X o o o
X M X X X X O X X O 0 0O 0000 000 0 0 X 0O o o0 o0
M M X X X O X X 0 OO OO OO OO OO O X 0O O o0 0 o
X X X X O X X O O OO OO OO O OO O X O 0O o0 o 0 o
X XM X O X X O 0 0O O OO OOO OO O X O 0O 0 o0 O o0 o
X X O X X O 0O OO OOO OO 0O O O % 0 0 0O 0 0 o0 o o
¥ O X X O O OO OOOO O 0 0O 0O X 0O 0 0O 0O 0 o0 o0 0 o
O X X 0 0 0O 0 0O0 O 0O O 0O O O0O X 0O 0O 0O O0O 0O O0 0 0 0 o
X X O O 0O O OO OOO O O 0O ®W O O O O0O OoOOoOO0O O0O o0 0 o©°
X 0O O O 0O O0OO OO O O O X 0O 0O O 0 0 0 0O 0 o0 o0 0 %
O 0 0O 0O OO OO O 0 O X O 0 0 0 0 0 0 0 0 0 0 x X
O 0 0O 0O 0O OO OO O O X 0 0O 0 0O 0 0 0 0 0 0 0 X % o
O 0 0O OO OO OO0 X OO 0 0 0 0O 0 0 0 0 0 %X xw 0 o
C 0O O OO O OO O O 0O 0O O O 0 0 0 0 0 0O X X o o0 X
O 0 0 OO OO O OO O O O O 0O 0 0 0 0 X X 0 0 X %
O 0 0 0O O O 0O ¥ 00O O O O 0 0 0O 0 0 0 X X 0O 0 W »x %
O 0 0 OO O X 0O O O O O 0O O O 0 0 0 X X O 0 X X X X
O 0O 0 O 0O X 0O 0O OO O O O 0O 0 0 0 X X 0 0 X X X X X
0O O 0 0O X 0 0O 0O OO O 0O 0O 0 0 0 W X 0 0 X X X X X X
O O 0O ¥ 0 0O 0O O OO O O 0O 0O 0 X X 0 0 W ® X X X X X
O O X 0O 0O O 0 0O O O O 0O 0 0 W X O 0 W X X »W X X X X
O % 0 0 0 0O O 0O O O O O O ¥ W 0 0 X X ¥ X X X X X X
X O 0 0O O O 0O 0O O O O O X X 0 0 W X X X MW X X X X X

Fig. 1.4

Sparsity pattern of matrices F2(26, 26, 12, 3, a)

We emphasize here that by varying the parameters for test matrices of
class F2 we can change the size n, the ratio m/n, the density
NZ/nz, the sparsity pattern, and the stability properties of the ma-
trices and therefore carry out a rather systematic investigation of how

the performance of a sparse matrix code depends on these quantities.

