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PREFACE

An emerging trend in many scientific disciplines is a strong tendency toward being
transformed into some form of information science. One important pathway in this
transition has been via the application of network analysis. The basic methodology in
this area is the representation of the structure of an object of investigation by a graph
representing a relational structure. It is because of this general nature that graphs have
been used in many diverse branches of science including bioinformatics, molecular
and systems biology, theoretical physics, computer science, chemistry, engineering,
drug discovery, and linguistics, to name just a few. An important feature of the book
“Statistical and Machine Learning Approaches for Network Analysis” is to combine
theoretical disciplines such as graph theory, machine learning, and statistical data
analysis and, hence, to arrive at a new field to explore complex networks by using
machine learning techniques in an interdisciplinary manner.

The age of network science has definitely arrived. Large-scale generation of
genomic, proteomic, signaling, and metabolomic data is allowing the construction
of complex networks that provide a new framework for understanding the molecular
basis of physiological and pathological states. Networks and network-based methods
have been used in biology to characterize genomic and genetic mechanisms as well
as protein signaling. Diseases are looked upon as abnormal perturbations of critical
cellular networks. Onset, progression, and intervention in complex diseases such as
cancer and diabetes are analyzed today using network theory.

Once the system is represented by a network, methods of network analysis can
be applied to extract useful information regarding important system properties and to
investigate its structure and function. Various statistical and machine learning methods
have been developed for this purpose and have already been applied to networks. The
purpose of the book is to demonstrate the usefulness, feasibility, and the impact of the
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methods on the scientific field. The 11 chapters in this book written by internationally
reputed researchers in the field of interdisciplinary network theory cover a wide range
of topics and analysis methods to explore networks statistically.

The topics we are going to tackle in this book range from network inference and
clustering, graph kernels to biological network analysis for complex diseases using
statistical techniques. The book is intended for researchers, graduate and advanced
undergraduate students in the interdisciplinary fields such as biostatistics, bioinfor-
matics, chemistry, mathematical chemistry, systems biology, and network physics.
Each chapter is comprehensively presented, accessible not only to researchers from
this field but also to advanced undergraduate or graduate students.

Many colleagues, whether consciously or unconsciously, have provided us with
input, help, and support before and during the preparation of the present book. In
particular, we would like to thank Maria and Gheorghe Duca, Frank Emmert-Streib,
Boris Furtula, Ivan Gutman, Armin Graber, Martin Grabner, D. D. Lozovanu, Alexei
Levitchi, Alexander Mehler, Abbe Mowshowitz, Andrei Perjan, Ricardo de Matos
Simoes, Fred Sobik, Dongxiao Zhu, and apologize to all who have not been named
mistakenly. Matthias Dehmer thanks Christina Uhde for giving love and inspiration.
We also thank Frank Emmert-Streib for fruitful discussions during the formation of
this book.

We would also like to thank our editor Susanne Steitz-Filler from Wiley who has
been always available and helpful. Last but not the least, Matthias Dehmer thanks
the Austrian Science Funds (project P22029-N13) and the Standortagentur Tirol for
supporting this work.

Finally, we sincerely hope that this book will serve the scientific community of
network science reasonably well and inspires people to use machine learning-driven
network analysis to solve interdisciplinary problems successfully.

MATTHIAS DEHMER
SuBHASH C. BASAK
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1

A SURVEY OF COMPUTATIONAL
APPROACHES TO RECONSTRUCT AND
PARTITION BIOLOGICAL NETWORKS

Lirt ACHARYA, THAIR JUDEH, AND DONGXIAO ZHU

“Everything is deeply intertwingled”
Theodor Holm Nelson

1.1 INTRODUCTION

The above quote by Theodor Holm Nelson, the pioneer of information technology,
states a deep interconnectedness among the myriad topics of this world. The
biological systems are no exceptions, which comprise of a complex web of biomolec-
ular interactions and regulation processes. In particular, the field of computational
systems biology aims to arrive at a theory that reveals complicated interaction pat-
terns in the living organisms, which result in various biological phenomenon. Recog-
nition of such patterns can provide insights into the biomolecular activities, which
pose several challenges to biology and genetics. However, complexity of biologi-
cal systems and often an insufficient amount of data used to capture these activities
make a reliable inference of the underlying network topology as well as characteri-
zation of various patterns underlying these topologies, very difficult. As a result, two
problems that have received a considerable amount of attention among researchers
are (1) reverse engineering of biological networks from genome-wide measurements
and (2) inference of functional units in large biological networks (Fig 1.1).

Statistical and Machine Learning Approaches for Network Analysis, Edited by Matthias Dehmer and
Subhash C. Basak.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.



2 A SURVEY OF COMPUTATIONAL APPROACHES

Biological networks

FIGURE 1.1 Approaches addressing two fundamental problems in computational systems
biology (1) reconstruction of biological networks from two complementary forms of data
resources, gene expression data and gene sets and (2) partitioning of large biological networks
to extract functional units. Two classes of problems in network partitioning are graph clustering
and community detection.

Rapid advances in high-throughput technologies have brought about a revolution
in our understanding of biomolecular interaction mechanisms. A reliable inference
of these mechanisms directly relates to the measurements used in the inference pro-
cedure. High throughput molecular profiling technologies, such as microarrays and
second-generation sequencing, have enabled a systematic study of biomolecular ac-
tivities by generating an enormous amount of genome-wide measurements, which
continue to accumulate in numerous databases. Indeed, simultaneous profiling of
expression levels of tens of thousands of genes allows for large-scale quantitative
experiments. This has resulted in substantial interest among researchers in the devel-
opment of novel algorithms to reliably infer the underlying network topology using
gene expression data. However, gaining biological insights from large-scale gene
expression data is very challenging due to the curse of dimensionality. Correspond-
ingly, a number of computational and experimental methods have been developed to
arrange genes in various groups or clusters, on the basis of certain similarity crite-
rion. Thus, an initial characterization of large-scale gene expression data as well as
conclusions derived from biological experiments result in the identification of several
smaller components comprising of genes sharing similar biological properties. We
refer to these components as gene sets. Availability of effective computational and
experimental strategies have led to the emergence of gene sets as a completely new
form of data for the reverse engineering of gene regulatory relationships. Gene set
based approaches have gained more attention for their inherent ability to incorporate
higher-order interaction mechanisms as opposed to individual genes.
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There has been a sequence of computational efforts addressing the problem of
network reconstruction from gene expression data and gene sets. Gaussian graphi-
cal models (GGMs) [1-3], probabilistic Boolean networks (PBNs) [4-7], Bayesian
networks (BNs) [8,9], differential equation based [10,11] and mutual information net-
works such as relevance networks (RNs) [12,13], ARACNE [14], CLR [15], MRNET
[16] are viable approaches capitalizing on the use of gene expression data, whereas
collaborative graph model (cGraph) [17], frequency method (FM) [18], and network
inference from cooccurrences (NICO) [19,20] are suitable for the reverse engineering
of biological networks from gene sets.

After a biological network is reconstructed, it may be too broad or abstract of
a representation for a particular biological process of interest. For example, given
a specific signal transduction, only a part of the underlying network is activated as
opposed to the entire network. A finer level of detail is needed. Furthermore, these
parts may represent the functional units of a biological network. Thus, partitioning
a biological network into different clusters or communities is of paramount
importance.

Network partitioning is often associated with several challenges, which make the
problem NP-hard [21]. Finding the optimal partitions of a given network is only feasi-
ble for small networks. Most algorithms heuristically attempt to find a good partition-
ing based on some chosen criteria. Algorithms are often suited to a specific problem
domain. Two major classes of algorithms in network partitioning find their roots in
computer science and sociology, respectively [22]. To avoid confusion, we will refer
to the first class of algorithms as graph clustering algorithms and the second class of
algorithms as community detection algorithms. For graph clustering algorithms, the
relevant applications include very large-scale integration (VLSI) and distributing jobs
on a parallel machine. The most famous algorithm in this domain is the Kernighan—Lin
algorithm [23], which still finds use as a subroutine for various other algorithms. Other
graph clustering algorithms include techniques based on spectral clustering [24]. Orig-
inally community detection algorithms focused on social networks in sociology. They
now cover networks of interest to biologists, mathematicians, and physicists. Some
popular community detection algorithms include Girvan—-Newman algorithm [25],
Newman'’s eigenvector method [21,22], clique percolation algorithm [26], and In-
fomap [27]. Additional community detection algorithms include methods based on
spin models [28,29], mixture models [30], and label propagation [31].

Intuitively, reconstruction and partitioning of biological networks appear to be two
completely opposite problems in that the former leads to an increase, whereas the lat-
ter results in a decrease of the dimension of a given structure. In fact, these problems
are closely related and one leads to the foundation of the other. For instance, presence
of hypothetical gene regulatory relationships in a reconstructed network provides a
motivation for the detection of biologically meaningful functional modules of the
network. On the other hand, prior to apply gene set based network reconstruction al-
gorithms, a computational or experimental analysis is first needed to derive gene sets.
In this chapter, we present a number of computational approaches to reconstruct bio-
logical networks from genome-wide measurements, and to partition large biological
networks into subnetworks. We begin with an overview of directed and undirected
networks, which naturally arise in biological systems. Next, we discuss about two
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complementary forms of genome-wide data, gene expression data and gene sets, both
of which can be accommodated by existing network reconstruction algorithms. We
describe the principal aspects of various approaches to reconstruct biological networks
using gene expression data and gene sets, and discuss the pros and cons associated
with each of them. Finally, we present some popular clustering and community al-
gorithms used in network partitioning. The material on network reconstruction and
partition is largely based on Refs. [2,3,6-8,13,17-20,32] and [21-23,25-27,33-36],
respectively.

1.2 BIOLOGICAL NETWORKS

A network is a graph G(V, E) defined in terms of a set of vertices V and a set of
edges E. In case of biological networks, a vertex v € V is either a gene or protein
encoded by an organism, and an edge e € E joining two vertices vy, v € V in the
network represents biological properties connecting v; and vy. A biological network
can be directed or undirected depending on the biological relationship that used to
join the pairs of vertices in the network. Both directed and undirected networks occur
naturally in biological systems. Inference of these networks is a major challenge in
systems biology. We briefly review two kinds of biological networks in the following
sections.

1.2.1 Directed Networks

In directed networks, each edge is identified as an ordered pair of vertices. Accord-
ing to the Central Dogma of Molecular Biology, genetic information is encoded
in double-stranded DNA. The information stored in DNA is transferred to single-
stranded messenger RNA (mRNA) to direct protein synthesis [42]. Signal transduc-
tion is the primary mean to control the passage of biological information from DNA to
mRNA with mRNA directing the synthesis of proteins. A signal transduction event is
usually triggered by the binding of external ligands (e.g., cytokine and chemokine) to
the transmembrane receptors. This binding results in a sequential activation of signal
molecules, such as cytoplasmic protein kinase and nuclear transcription factors (TFs),
to lead to a biological end-point function [42]. A signaling pathway is composed of
a web of gene regulatory wiring in response to different extracellular stimulus. Thus,
signaling pathways can be viewed as directed networks containing all genes (or pro-
teins) of an organism as vertices. A directed edge represents the flow of information
from one gene to another gene.

1.2.2 Undirected Networks

Undirected networks differ from directed networks in that the edges in such networks
are undirected. In other words, an undirected network can be viewed as a directed
network by considering an undirected pair of vertices (v;, v2) as two directed pairs
(v1, v2) and (v2, v1). Some biological networks are better suited for an undirected
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representation. Protein—protein interaction (PPI) network is an undirected network,
where each protein is considered as a vertex and the physical interaction between a
pair of proteins is represented as an edge [43].

The past decade has witnessed a significant progress in the computational inference
of biological networks. A variety of approaches in the form of network models and
novel algorithms have been proposed to understand the structure of biological net-
works at both global and local level. While the grand challenge in a global approach is
to provide an integrated view of the underlying biomolecular interaction mechanisms,
alocal approach focuses on identifying fundamental domains representing functional
units of a biological network.

Both directed and undirected network models have been developed to reliably infer
the biomolecular activities at a global level. As discussed above, directed networks
represent an abstraction of gene regulatory mechanisms, while the physical interac-
tions of genes are suitably modeled as undirected networks. Focus has also been on the
computational inference of biomolecular activities by accommodating genome-wide
data in diverse formats. In particular, gene set based approaches have gained attention
in recent bioinformatics analysis [44,45]. Availability of a wide range of experimen-
tal and computational methods have identified coherent gene set compendiums [46].
Sophisticated tools now exist to statistically verify the biological significance of a par-
ticular gene set of interest [46—48]. An emerging trend in this field is to reconstruct
signaling pathways by inferring the order of genes in gene sets [19,20]. There are sev-
eral unique features associated with gene set based network inference approaches. In
particular, such approaches do not rely on gene expression data for the reconstruction
of underlying network.

The algorithms to understand biomolecular activities at the level of subnetworks
have evolved over time. Community detection algorithms, in particular, originated
with hierarchical partitioning algorithms that include the Girvan—-Newman algorithm.
Since these algorithms tend to produce a dendrogram as their final result, it is necessary
to be able to rank the different partitions represented by the dendrogram. Modularity
was introduced by Newman and Girvan to address this issue. Many methods have
resulted with modularity at the core. More recently, though, it has been shown that
modularity suffers from some drawbacks. While there have been some attempts to
address these issues, newer methods continued to emerge such as Infomap. Research
has also expanded to incorporate different types of biological networks and commu-
nities. Initially, only undirected and unweighted networks were the focus of study.
Methods are now capable of dealing with both directed and weighted networks. More-
over, previous studies only concentrated on distinct communities that did not allow
overlap. With the advent of the clique percolation method and other similar methods,
overlapping communities are becoming increasingly popular. The aforementioned
approaches have been used to identify the structural organization of a variety of bi-
ological networks including metabolic networks, PPI networks, and protein domain
networks. Such networks have a power—law degree distribution and the quantitative
signature of scale-free networks [49]. PPI networks, in particular, have been the sub-
ject of intense study in both bioinformatics and biology as protein interactions are
fundamental for cellular processes [50].
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FIGURE 1.2 (a)Example of a directed network. The figure shows Escherichia coli gold stan-
dard network from the DREAM3 Network Challenges [37-39]. (b) Example of an undirected
network. The figure shows an in silico gold standard network from the DREAM2 Network
Challenges [40,41].

A common problem associated with the computational inference of a biological
network is to assess the performance of the approach used in the inference procedure.
It is quite assess as the structure of the true underlying biological network is unknown.
As aresult, one relies on biologically plausible simulated networks and data generated
from such networks. A variety of in silico benchmark directed and undirected net-
works are provided by the dialogue for reverse engineering assessments and methods
(DREAM) initiative to systematically evaluate the performance of reverse engineer-
ing methods, for example Refs. [37—41]. Figures 1.2 and 1.7 illustrate gold standard
directed network, undirected network, and a network with community structure from
the in silico network challenges in DREAM initiative.

1.3 GENOME-WIDE MEASUREMENTS

In this section, we present an overview of two complementary forms of data resources
(Fig. 1.3), both of which have been utilized by the existing network reconstruction
algorithms. The first resource is gene expression data, which is represented as matrix
of gene expression levels. The second data resource is a gene set compendium. Each
gene set in a compendium stands for a set of genes and the corresponding gene
expression levels may or may not be available.

1.3.1 Gene Expression Data

Gene expression data is the most common form of data used in the computational
inference of biological networks. It is represented as a matrix of numerical values,
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(b)

(a)

—-—m‘
FIGURE 1.3 Two complementary forms of data accommodated by the existing network
reconstruction algorithms. (a) Gene expression data generated from high-throughput platforms,

for example, microarray. (b) Gene sets often resulted from explorative analysis of large-scale
gene expression data, for example, cluster analysis.

where each row corresponds to a gene, each column represents an experiment and
each entry in the matrix stands for gene expression level. Gene expression profil-
ing enables the measurement of expression levels of thousands of genes simulta-
neously and thus allows for a systematic study of biomolecular interaction mecha-
nisms on genome scale. In the experimental procedure for gene expression profiling
using microarray, typically a glass slide is spotted with oligonucleotides that cor-
respond to specific gene coding regions. Purified RNA is labeled and hybridized
to the slide. After washing, gene expression data is obtained by laser scanning. A
wide range of microarray platforms have been developed to accomplish the goal of
gene expression profiling. The measurements can be obtained either from conven-
tional hybridization-based microarrays [S1-53] or contemporary deep sequencing
experiments [54,55]. Affymetrix GeneChip (www.affymetrix.com), Agilent Microar-
ray (www.genomics.agilent.com), and Illumina BeadArray (www.illumina.com) are
representative microarray platforms. Gene-expression data are accessible from sev-
eral databases, for example, National Center for Biological Technology (NCBI) Gene
Expression Omnibus (GEO) [56] and the European Molecular Biology Lab (EMBL)
ArrayExpress [57].

1.3.2 Gene Sets

Gene sets are defined as sets of genes sharing biological similarities. Gene sets
provide a rich source of data to infer underlying gene regulatory mechanisms as they
are indicative of genes participating in the same biological process. It is impractical
to collect a large number of samples from high-throughput platforms to accurately
reflect the activities of thousands of genes. This poses challenges in gaining deep
biological insights from genome-wide gene expression data. Consequently,
experimental and computational methods are adopted to reduce the dimension of
the space of variables [58]. Such characterizations lead to the discovery of clusters



