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PREFACE

In one of the classic books for student of linear algebra, Finite Dimensional
Vector Spaces, Halmos (1974) wrote,

Almost every combination of the adjectives proper, latent, characteristic, eigen and
secular, with the nouns root, number and value, has been used in the literature for
what we call a proper value.

This interesting comment on the nomenclature of cigenvalue echoes the enigmatic
yet important role that eigenvalues play in nature. This entity of eigenvalues has
been recognized under so many different names because its existence has been
found in settings of widely varied disciplines. One instance, as Parlett (1998) put
it, is that,

Vibrations are everywhere, and so too are the eigenvalues associated with them.

In our fervent pursuit of the Knowledge of Nature, it often becomes necessary
to first understand the spectral properties of the underlying physical system. It
thus follows that considerable research effort has been expended on eigenvalue
computation. The applications of this research furnish critical insight into the
understanding of many vital physical systems.

An inverse eigenvalue problem, in contrast, concerns the reconstruction of
a physical system from prescribed spectral data. The spectral data involved
may consist of the complete or only partial information of eigenvalues or eigen-
vectors. It is obvious that the construction must be subject to some corporeal
constraints due to, for instance, the structure or feasibility of the system.
The objective of an inverse eigenvalue problem is to construct a physical sys-
tem that maintains a certain specific structure as well as that given spectral
property.

Inverse eigenvalue problems arise in a remarkable variety of applications,
including system and control theory, geophysics, molecular spectroscopy, particle
physics, structure analysis, and so on. Generally speaking, the basic goal of
an inverse eigenvalue problem is to reconstruct the physical parameters of a
certain system from the knowledge or desire of its dynamical behavior. Since
the dynamical behavior often is governed by the underlying natural frequencies
and/or normal modes, the spectral constraints are thus imposed. On the other
hand, in order that the resulting model is physically realizable, additional struc-
tural constraints must also be imposed upon the construction. Depending on the
application, inverse eigenvalue problems appear in many different forms. Our
basic assumption in this presentation is that the underlying physical system is
somehow represented in terms of matrices. The subsequent discussion therefore

vi



PREFACE vii

centers around eigenvalue problems, and particularly the inverse eigenvalue
problems, for matrices.

Associated with any inverse eigenvalue problem are two fundamental ques-
tions  the theoretic issue on solvability and the practical issue on computability.
Solvability concerns obtaining a necessary or a sufficient condition under which
an inverse eigenvalue problem has a solution and whether a solution is unique.
Computability concerns developing a procedure by which, knowing a prior: that
the given spectral data are feasible, a matrix can be constructed numerically.
Both questions are difficult and challenging, and we still do not have complete
answers. Additionally, except for a few cases most inverse eigenvalue prob-
lems have multiple solutions. The very hard yet important consideration of its
sensitivity analysis should not be overlooked.

In this note our emphasis is to provide an overview of the vast scope of
this fascinating problem. The fundamental questions, some known results, many
applications, mathematical properties, a variety of numerical techniques, as
well as several open problems will be discussed. We have to acknowledge that
merely getting the current materials organized has been a formidable task since
the beginning of this project. Each cross-section of this immense subject is in
fact a major research effort itself with many variations. Theories and meth-
ods vary accordingly but sometimes share surprising and subtle similarities.
We feel that it might be helpful to at least categorize the problems by some
kinds of characteristics. As such, we divide the inverse eigenvalue problems into
those that are attributed by parameters in Chapter 3, those that carry spe-
cific structures in Chapter 4, those that are characterized by partial information
of eigenvalues and eigenvectors in Chapter 5, those that are of least squares
nature in Chapter 6, those that are spectrally constrained in Chapter 7, those
that are of low ranks in Chapter 8, and those that are specified by orbits of
group actions in Chapter 9. No doubt such a classification will never be per-
fect. It does appear that, instead of setting forth a systematic theory and
practical algorithms, we are proffering a problem book to readers. Though
some of these chapters imbricate and refer to each other, readers might find
some relief in knowing that each chapter can be rendered independently of each
other.

We wish to have accomplished three goals in this treatise: First, we desire
to demonstrate the breadth of arcas where inverse eigenvalue problems can
arise. The discipline ranges from practical engineering applications to abstract
algebraic theorization. Secondly, we want to corroborate the depth of intric-
acy of inverse eigenvalue problems. While the setup of an inverse eigenvalue
problem seems relatively easy, the solution is not straightforward. The instru-
ments employed to solve such a problem are quite sophisticated, including
techniques from orthogonal polynomials, degree theory, optimization, to dif-
ferential geometry, and so on. Finally and most importantly, we want to arousc
interest and encourage further research into this topic. Throughout the text, we
wish to convey the message that there is much room for further study of the
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numerical development and theoretical understanding of this fascinating inverse
problem.

This book is an accumulation of many years’ research supported in part
by the National Science Foundation under the grants DMS-9803759 and DMS-
0073056. The book is based on a series of lectures first presented at the Istituto
per Ricerche di Matematica Applicata (IRMA), Bari, Italy, in the summer of
2001 under the encouragement of Fasma Diele. The success of presenting those
lectures was made possible by Roberto Peluso at the IRMA and Dario Bini at
the Universitd di Pisa with the support from Il Consiglio Nazionale delle Ricerche
(CNR) and the Gruppo Nazionale per il Calcolo Scientifico (GNCS) under the
project “Matrici con struttura, analisi, algoritmi e applicazioni”. Later in the fall
of 2001 the same series was presented at the National Center of Theoretical
Sciences (NCTS), Hsinchu, Taiwan, upon the invitation by Wen-Wei Lin at
the Tsinhua University. At about the same time, we received a summons from
Arieh Iserles to write a treatise for Acta Numerica. This sequence of events
inadvertently kindled the fire within us to further extend and complete this
project. Many other people have made various contributions to this project. We
are especially indebted to Hua Dai at the Nanjing University of Aeronautics and
Astronautics, Graham Gladwell at the University of Waterloo, Robert Plemmons
at the Wake Forest University, Yitshak Ram at the Louisiana State University,
and Shufang Xu at the Peking University, for their comments, suggestions and
generous assistance. The heartfelt kindness and encouragement received from
these many dear colleagues are greatly appreciated.

Moody T. Chu and Gene H. Golub
Raleigh, North Carolina and Stanford, California
October, 2004
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