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Preface

Since its first publication in 1991, sufficient time has elapsed for this book to
undergo a number of improvements, extensions and updates made desirable
by progress in the field. In particular, the projection and partitioning technique
can now be formulated in a simple and appealing way that also enables us to
easily derive the standard quantum-chemical approximations. Thus, extensive
rewriting of Chaps. 4 and 5 was imperative. Chapter 6 now contains an exten-
sion of the cumulant formalism to excited states, while Chap. 7 formulates the
projection method for finite temperature calculations.

The second part of the book, which presents various applications of the
theory, also includes a number of extensions. Chapter 9, which deals with semi-
conductors, presents new and highly accurate results for the ground state
based on the method of increments. In Chap. 11 the treatment of excitations in
transition metals has been improved. Chapter 12 on strong correlations has
been thoroughly rewritten to take account of new developments and insights.
Chapters 13 and 14 have likewise been extended and modified; in particular,
the section on high-T, superconducting materials has been updated.

Without the immense support of Dr. H. Lotsch, the spiritus rector of the
physical science program of Springer-Verlag, it would have taken far longer
for this edition to appear. I am very grateful to him.

Dresden P. Fulde
February 1995



Acknowledgements

A number of colleagues have contributed to this edition by suggesting im-
provements and by reading it critically. Various parts of the manuscript bene-
fitted from the contributions of Drs. R. Eder, H. Eskes, K. Fischer, J. Grafen-
stein, K. Hallberg, B. Mehlig, B. Schmidt, T. Schork, H. Stoll, P. Thalmeier,
Tran Minh Tien, P. Unger, and G. Zwicknagl and I would like to thank them
for their efforts. I would especially like to acknowledge the support given by S.
Blawid on Chaps. 2 and 14 and by B. Paulus on Chap. 9. Particular thanks are
due to Dr. M.C. Benassi who improved the quality of the English considerably
and therefore made the book easier to read. The typing was done by Mrs. L.
Koch. I thank her for this and also Mrs. R. Noack for doing the drawings.



Preface to the First Edition

Any participant in a quantum chemistry meeting will notice that the atten-
dance of solid-state physicists is rather sparse, and the reverse holds true for
solid-state physics conferences, where one will meet hardly any quantum
chemists. This shows how little contact exists between these two very active
and important fields of condensed matter research. This is regrettable because,
as solid-state physics becomes more and more a materials science and as quan-
tum chemists are able to treat larger and larger molecules, the topics of mutual
interest in these two fields are rapidly increasing. In order to change this situa-
tion, monographs are required that emphasize the features common to quan-
tum chemistry and solid-state physics. It is the aim of this book to make a
contribution here. An attempt is made to present the problem of electron cor-
relations in molecules and solids in a unified form. For that we need a frame-
work within which we can treat not only molecules and solids but also weakly
and strongly correlated electrons. Such a framework is provided here. Because
the terminology is often quite different in quantum chemistry and solid-state
physics we have tried to compromise by using vocabulary and notation which
should be reasonably familiar to scientists in both fields.

The book is divided into two parts. The first seven chapters concentrate
on the various methods and techniques which are used to treat electron corre-
lations in molecules and solids, whereas Chaps. 8—14 deal mainly with applica-
tions. They range from atoms and molecules to semiconductors and metals,
with special emphasis on transition metals. Particular attention is paid to
strongly correlated electron systems, a topic to which the last three chapters
are devoted. The Kondo effect and in particular heavy-fermion systems and
the new high-temperature superconducting materials fall into that category.

Without the fine cooperation and the support of Dr. H. Lotsch of Springer-
Verlag this book would have taken much longer to complete. Ms. D. Hollis,
also of Springer-Verlag, made important improvements to the manuscript. I
am thankful to both of them.

Stuttgart P. Fulde
March 1991
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1. Introduction

This book aims at bridging the gap between two active fields of research,
i.e., quantum chemistry and solid-state theory. Soon after the development of
quantum mechanics by Heisenberg [1.1], Schrodinger [1.2], Born and Jordan
[1.3], Dirac [1.4], and others, the paper by Heitler and London [1.5] on the
ground state of the H, molecule opened the way to a theoretical understand-
ing of chemical bonding. Their work marks the beginning of quantum chemis-
try. The Heitler—-London ansatz for the ground-state wavefunction of H,
treats the two electrons as being strongly correlated, i.e., by excluding ionic
configurations the two electrons stay completely out of each other’s way. The
ground state is a singlet and has the form

YR (ry, 1) = 5[, (r)da(ry) + ¢2(r)dy (r2)1 (2, By — Bray) . (1.0.1)

The functions ¢, ,(r) are centered on atoms 1 and 2, and the spinors « and f
refer to spin up and spin down, respectively.

A distinctly different approach to the problem of interacting electrons was
taken shortly thereafter by Hartree [1.6], Fock [1.7], and Slater [1.8], who
treated the electrons as being independent of each other and introduced the
idea of the self-consistent field. The latter is the interaction field an electron
experiences when we take a spatial average over the positions of all the other
electrons. Within the independent-electron approximation, the ground-state
wavefunction of H, is of the form

1
Yhe(r,,ry) = W[¢l (r))@,(ry) + @1(r)) s (ry) + y(ry) ey (ry)
+ @2(ry) 2 (r2) (21 By — Brx) (1.0.2)

One notices that the ionic configuration ¢, ¢, and ¢,¢, in (1.0.2) enter with
equal weight when compared with the nonionic configurations. Thus, when the
two hydrogen atoms are pulled apart, the wavefunction does not reduce prop-
erly to the atomic limit. On the other hand, (1.0.1) does not reduce properly to
the correct wavefunction in the limit of small atomic distances. As one might
expect, the true ground state lies between the two extremes (1.0.1) and (1.0.2).
Electron correlations reduce the ionic configuration relative to the nonionic
ones, but they do not reduce them to zero as (1.0.1) suggests.

The forms (1.0.1) and (1.0.2) are prototypes of wavefunctions which apply
not only to the H, molecule but, more generally, to both quantum chemistry
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and to solid-state physics. They stand for localized versus delocalized electrons
and have been the subject of countless discussions and controversies. Whether
an improved calculation should start from a wavefunction of the Heitler—
London (strong-correlation limit) or the Hartree—Fock form (limit of indepen-
dent electrons) depends on how strong electron correlations become in a given
molecule or solid. In principle, one would like to have a quantity which
specifies the correlation strength in different bonds or atoms in a given chemi-
cal environment. This textbook intends to provide this information in a sys-
tematic fashion.

Two different roads have been pursued in quantum chemistry towards a
qualitative and quantitative understanding of chemical bonding. Pauling [1.9]
introduced and developed one of those approaches, basing it on the concept of
resonance and resonance structures and essentially using the Heitler—London
picture. The other one, the molecular orbital theory, was first developed by
Hund [1.10] and Mulliken [1.11] and elaborated by Slater [1.8], Hiickel
[1.12], and others. It is based on the idea of independent electrons and hence
corresponds to (1.0.2). When formulated broadly enough, both approaches de-
scribed above are equivalent. In practice, however, often only the lowest-order
corrections can be calculated for the two limiting cases. The molecular orbital
theory has had great success, since most chemical bonds are relatively weakly
correlated. It has failed, however, with certain metal-organic complexes or, as
far as solids are concerned, with the copper-based high-temperature super-
conducting oxides, in which electron correlations are strong. The independent-
electron approximation proves in those cases an inappropriate starting point.

This leads us to the theory of solids. Sommerfeld and Bethe [1.13] offered
the first coherent presentation of a microscopic theory of solids. In particular,
their theory of metals is based on free electrons. In view of the strong electron
interactions, the fact that a theory of free electrons was so successful remained
a puzzle for a long time. It was resolved only after the development of the
concept of quasiparticles in Fermi liquids by Landau [1.14]. From his contri-
bution we have gained the insight that the low-energy excitations of a metal
can be described by quasiparticles which behave like electrons with renormal-
ized mass, Fermi velocity, etc. This concept holds even for metals with strongly
correlated electrons like the heavy-fermion systems. Whether it holds in all
cases remains an open problem. As regards the high-T, superconducting mate-
rials, for example, Anderson [1.15] has claimed that this is not the case.

The competition between the Heitler—-London and independent-electron
descriptions played an important role in the development of the theory of
transition metals. Prominent representatives of the two approaches were Van
Vleck [1.16] and Slater [1.17]. There is general consent today that in transi-
tion metals the d electrons are delocalized; it is also clear, however, that corre-
lations among them are far from weak. Thus a number of atomic features —
like Hund’s rule coupling — persist despite delocalization. Correlations are
particularly strong in some of the transition metal oxides; a well-known exam-
ple is CoO. Were it not for the strong correlations, this substance would be
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metallic, since it has one unpaired electron per formuia unit. Instead, CoO is a
Mott—Hubbard insulator because correlations prevent the charge fluctuations
required for metallic conduction.

Methods based on the idea of a self-consistent field have been widely ap-
plied, in particular after the development of the local-density approximation to
the density functional theory by Hohenberg, Kohn, and Sham [1.18, 19]. The
concept of the self-consistent field was originally designed for the independent-
electron approximation. Due to the development of the local-density approxi-
mation, the self-consistent field can be extended to include correlation contri-
butions. Together with new methods for solving the Schrédinger equation,
initiated by the development of the linearized versions of the muffin tin orbital
and augmented plane wave methods [1.20, 21], local-density theory has pene-
trated all areas of solid-state theory. Despite its great success, however, it has
not been able to provide more insight into the electron correlation problem.
This is not surprising because the local-density approximation uses the corre-
lation energy of a homogeneous electron gas as input. The important correla-
tions due to the orbital structure of the electronic charge distributions (e.g.,
Hund’s rule correlations) remain untouched by that approach.

Although many aspects of electron correlations are very similar in mole-
cules and solids, the theoretical developments in the two fields have diverged
to such an extent that today they often do not even share a common language.
Regrettably, this divergence has prevented cross-fertilization between the two
fields. One main obstacle has been the fact that the methods applied in quan-
tum chemistry for the treatment of correlations in small molecules cannot be
carried over to solids, in particular when electrons are well delocalized. From a
physical point of view, however, this difficulty should be avoidable because the
correlation hole around an electron is a fairly local object and does not differ
much in a molecule and a corresponding solid (see e.g. [1.22]) — hence this
book’s emphasis on recently developed methods that overcome such diffi-
culties (Chap. 5). Provided that the correlations are not too strong, self-
consistent field calculations are a good starting point, and allow solids and
molecules to be treated the same way and with the same accuracy. The devel-
opment of quantum chemistry has proven that ab initio calculations based
on controlled approximations capable of systematic improvement have made
simpler computational schemes based on uncontrolled simplifications obsolete.
Whether or not the same will eventually hold true for solid-state theory re-
mains to be seen.

Systems with strong electron correlations require special attention. As
long as the electron correlations are weak, the residual interactions, i.e., those
interactions not described by the self-consistent field, are small and may be
treated by expansion or variational methods. The unperturbed Hamiltonian
H, is then of a single-particle form. When the correlations are strong, on the
other hand, the unperturbed Hamiltonian H, must incorporate the dominant
parts of the electron interactions, thus losing its single-particle form. The weak
hybridizations then need to be treated approximately. The main difference



