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Trace formula in noncommutative
Geometry and the zeros of the Riemann
zeta function

Alain Connes

Department of Mathematics
Coll. de France
3 rue dUUIm
75005 Paris Cedex 05, FRANCE

connes@math.jussieu.fr

Abstract

We give a spectral interpretation of the critical zeros of the Riemann
zeta function, and a geometric interpretation of the explicit formulas
of number theory as a trace formula on a noncommutative space. This
reduces the Riemann hypothesis to the validity of the trace formula.

It is an old idea, due to Polya and Hilbert that in order to understand the
location of the zeros of the Riemann zeta function, one should find a Hilbert
space ‘H and an operator D in H whose spectrum is given by the non trivial
zeros of the zeta function. The hope then is that suitable selfadjointness
properties of D (of 1 (D — %) more precisely) or positivity properties of
A = D(1 — D) will be easier to handle than the original conjecture. The
main reasons why this idea should be taken seriously are first the work of
A. Selberg in which a suitable Laplacian A is related in the above way to
an analogue of the zeta function, and secondly the theoretical [2, 15-17]
and experimental evidence [5,18] on the fluctuations of the spacing between
consecutive zeros of zeta. The number of zeros of zeta whose imaginary part
is less than F > 0,

N(E)=+# ofzeros p, 0 <Imp< E (1.1)



has an asymptotic expression [21] given by

E E

N(E) = o <log <%) - 1) - g + 0(1) + Nosc(E) (1.2)

where the oscillatory part of this step function is
1 1 .
Nosc(E) = - Im log ¢ (5 + zE) (1.3)

assuming that E is not the imaginary part of a zero and taking for the
logarithm the branch which is 0 at +oo.

One shows (cf. [20]) that Nysc(E) is O(log E). In the decomposition (1.2)
the two terms (N (E)) = N(E) — Nosc(E) and Nys.(E) play an independent
role. The first one (IN(E)) which gives the average density of zeros just comes
from Stirling’s formula and is perfectly controlled. The second Ny (E) is
a manifestation of the randomness of the actual location of the zeros, and
to eliminate the role of the density one returns to the situation of uniform
density by the transformation

z; = (N(Ej)) (E; the j'' imaginary part of zero of zeta) . (1.4)

Thus the spacing between two consecutive z; is now 1 in average and the
only information that remains is in the statistical fluctuation. As it turns out
(17,18] these fluctuations are the same as the fluctuations of the eigenvalues
of a random hermitian matrix of very large size.

H. Montgomery [17] proved (assuming RH) a weakening of the following
conjecture (with «, 8 > 0),

Card{(4,5); 4,5 €1,...,M; z; — z; € [a, B]}

~ M/j (1 - (W)Z) du (1.5)

This law (1.5) is precisely the same as the correlation between eigenvalues of
hermitian matrices of the Gaussian unitary ensemble [17]. Moreover, numer-
ical tests due to A. Odlyzko [5,18] have confirmed with great precision the
behaviour (1.5) as well as the analogous behaviour for more than two zeros.
In [15,16], N. Katz and P. Sarnak proved an analogue of the Montgomery-
Odlyzko law for zeta and L-functions of function fields over curves.

It is thus an excellent motivation to try and find a natural pair (#, D)
where naturality should mean for instance that one should not even have to
define the zeta function in order to obtain the pair (in order for instance to
avoid the joke of defining H as the ¢2 space built on the zeros of zeta).

Let us first describe following (2] the direct attempt to construct the
Polya-Hilbert space from quantization of a classical dynamical system. The



original motivation for the theory of random matrices comes from quantum
mechanics. In this theory the quantization of the classical dynamical system
given by the phase space X and Hamiltonian h gives rise to a Hilbert space
‘H and a selfadjoint operator H whose spectrum is the essential physical ob-
servable of the system. For complicated systems the only useful information
about this spectrum is that, while the average part of the counting function,

N(E) = # eigenvalues of H in [0, E] (1.6)

is computed by a semiclassical approximation mainly as a volume in phase
space, the oscillatory part,

Nosc(E) = N(E) — (N(E)) (1.7)

is the same as for a random matrix, governed by the statistic dictated by
the symmetries of the system.
In the absence of a magnetic field, i.e. for a classical Hamiltonian of the

form,
1
h=—p*+V 1.8
— 72+ V(g) (18)
where V is a real-valued potential on configuration space, there is a natural

symmetry of classical phase space,

which preserves h, and entails that the correct ensemble on the random
matrices is not the above GU E but rather the Gaussian orthogonal ensemble:
GOE. Thus the oscillatory part Nosc(E) behaves in the same way as for a
random real symmetric matrix.

Of course H is just a specific operator in H and, in order that it behaves
generically it is necessary (cf. [2]) that the classical Hamiltonian system
(X, h) be chaotic with isolated periodic orbits whose instability exponents
(i.e. the logarithm of the eigenvalues of the Poincaré return map acting on
the transverse space to the orbits) are different from 0.

One can then [2] write down an asymptotic semiclassical approximation
to the oscillatory function Nysc(E)

o0
Nosc(E) = 717 Im/o Trace(H — (E + 1))~ idn (1.10)

using the stationary phase approximation of the corresponding functional
integral. For a system whose configuration space is 2-dimensional, this gives

[2] b

1 & 1 1 .
NOSC(E) o ;%:T']Z::l 'r—n" gqm_;—z) Sln(Spm(E)) (111)



where the 7, are the primitive periodic orbits, the label m corresponds to
the number of traversals of this orbit, while the corresponding instability
exponents are +),. The phase Sy, (E) is up to a constant equal to mETj"
where T7# is the period of the primitive orbit v,.

The formula (1.11) gives very precious information [2] on the hypothetical
“Riemann flow” whose quantization should produce the Polya-Hilbert space.
The point is that the Euler product formula for the zeta function yields
(cf. [2]) a similar asymptotic formula for Nys.(E) (1.3),

Nogel Z Z —— sin(m E log p) . (1.12)

P m= 1
Comparing (1.11) and (1.12) gives the following information,

The periodic primitive orbits should be labelled by the prime
numbers p = 2,3,5,7,. .., their periods should be the logp and their
instability exponents A\, = & log p.

(1.13)

Moreover, since each orbit is only counted once, the Riemann flow should

not possess the symmetry 7" of (1.9) whose effect would be to duplicate the

count of orbits. This last point excludes in particular the geodesic flows
since they have the time reversal symmetry 7.

However there are two important mismatches (cf. [2]) between the two
formulas (1.11) and (1.12). The first one is the overall minus sign in front

of formula (1.12), the second one is that though 2sh (225‘1) ~ p™? when
m — 00, we do not have an equality for finite values of m.

These are two fundamental difficulties and in order to overcome them
we shall use the well known strategy of extending the problem of finding
the hypothetical Riemann flow to the case of arbitrary global fields. By
specializing to the function field case we shall then obtain additional precious
information. The basic example of a global field is the field Q of rational
numbers and we shall take as a conceptual definition of such fields k, the
fact that they are discrete and cocompact in a (non discrete) locally compact
semisimple Abelian ring A. As it turns out A then depends functorially
on k and is called the Adele ring of k, often denoted by k4. When the
characteristic p of a global field k£ is > 0, the field k is the function field of a
non singular algebraic curve ¥ defined over a finite field F, included in k as
its maximal finite subfield, called the field of constants. One can then apply
the ideas of algebraic geometry, first developed over C, to the geometry of
the curve ¥ and obtain a geometric interpretation of the basic properties
of the zeta function of k; the dictionary contains in particular the following



lines

Functional equation Riemann Roch theorem
(Poincaré duality)

Explicit formulas of Lefchetz formula (1.14)
number theory for the Frobenius
Riemann hypothesis Castelnuovo positivity

Since F; is not algebraically closed, the points of ¥ defined over F, do not
suffice and one needs to consider ¥, the points of ¥ on the algebraic closure
F, of Fy, which is obtained by adjoining to F, the roots of unity of order
prime to gq. This set of points is a countable union of periodic orbits under
the action of the Frobenius automorphism, these orbits are parametrized by
the set of places of k and their periods are indeed given by the analogues of
the logp of (1.13). Being a countable set it does not qualify for analogue of
the Riemann flow and it only acquires an interesting structure from algebraic
geometry. The minus sign which was problematic in the above discussion
admits here a beautiful resolution since the analogue of the Polya-Hilbert
space is given, if one replaces C by @ the field of Z-adic numbers ¢ # p, by
the cohomology group

Hy (5, Q) (1.15)
which appears with an overall minus sign in the Lefchetz formula Trace/H® —
Trace/H' + Trace/H?.

For the general case this suggests

The Polya-Hilbert space H should appear from its negative &H.

(1.16)

The next thing that one learns from this excursion in characteristic p > 0

is that in that case one is not dealing with a flow but rather with a single

transformation. In fact taking advantage of Abelian covers of ¥ and of the

fundamental isomorphism of class field theory one finds that the natural

group that should replace R for the general Riemann flow is the Idele class

group:

Cr = GLy(A)/k". (1.17)

We can thus collect the information (1.13) (1.16) (1.17) that we have ob-

tained so far and look for the Riemann flow as an action of Cj on an hypo-
thetical space X.

There is a third approach to the problem of the zeros of the Riemann

zeta function, due to G. Pélya [19] and M. Kac [14] and pursued further

in [4,13]. It is based on statistical mechanics and the construction of a



quantum statistical system whose partition function is the Riemann zeta
function. Such a system was naturally constructed in [4] and it does indicate
using the first line of the dictionary of noncommutative Geometry what the
space X should be in general:

X = A/k* (1.18)

namely the quotient of the space A of adeles, A = k4 by the action of the
multiplicative group k*,

a€EA,qeEk* >aqe A. (1.19)

This space X is a noncommutative space and for instance even at the mea-
sure theory level, the corresponding von Neumann algebra,

Ro1 = L®(A) > k* (1.20)

where A is endowed with its Haar measure as an additive group, is the
hyperfinite factor of type Il
The Idele class group Cj acts on X by

(J,a) = ja VieCr,aeX (1.21)

and it was exactly necessary to divide A by k* so that (1.21) makes good
sense.

We shall come back later to the analogy between the action of Cy on Ry
and the action of the Galois group of the maximal Abelian extension of k.

What we shall do now is to construct the Hilbert space Lg of functions
on X with growth indexed by § > 1. Since X is a quotient space we shall
first learn in the usual manifold case how to obtain the Hilbert space L%(M)
of square integrable functions on M by working only on the universal cover
M with the action of T’ = w1 (M). Every function f € C*(M M) gives rise to

a function f on M by
> @ (1.22)

7(z)=z

and all g € C*°(M) appear in this way. Moreover, one can write the Hilbert
space inner product [,, fi(z) f2(z) dz, in terms of f; and f, alone. Thus

o 2
Wf12= S ‘E»,er f (’ym)\ dz where the integral is performed on a fundamen-

tal domain for I' acting on M. This formula defines a a prehilbert space norm
on C§°(M ) and L?(M) is just the completion of C°°(M ) for that norm. Note
that any function of the form f— f, has vanishing norm and hence disappears
in the process of completion. In our case of X = A/k* we thus need to define
the analogous norm on the Schwartz space S(A) of functions on A. Since 0



is fixed by the action of k* the expression 3_.c. f(yz) does not make sense
for z = 0 unless we require that f(0) = 0. Moreover, when |z| — 0, the
above sums approximate, as Riemann sums, the product of |z|~! by [ f dz
for the additive Haar measure, thus we also require [ f dz = 0. We can now
define the Hilbert space L(X)o as the completion of

S(A) = {f €S(A); f0) =0, [ fds=0) (1.23)
for the norm || ||5 given by
171 = [ #lao)] (1 + 1082 fal) /2 2] 5 (1.24)
gEk*

where the integral is performed on A*/k* and d*z is the multiplicative Haar
measure on A*/k*. The term (1+log? |z|)%/2 is there to control the growth of
the functions. The key point is that we use the measure |z| d*z instead of the
additive Haar measure dz. Of course for a local field K one has dz = |z|d*z
but this fails in the above global situation. Instead one has

dr =lim ¢|z|'*¢d*z. (1.25)
e—0

One has a natural representation of Cy, on L2(X)o given by
UG) (@) =f( ""2) Vzed,jeC (1.26)

and the result is independent of the choice of a lift of j in Jy = GL1(A)
because the functions f — f, are in the kernel of the norm. The conditions
(1.23) which define S(A) are invariant under the action of C} and give the
following action of Cy on the 2-dimensional supplement of S(A)g C S(A);
this supplement is C® C(1) where C is the trivial Cy module (corresponding
to f(0)) while the Tate twist C(1) is the module

(3, A) = 3l A (1.27)

coming from the equality
[ 16 0)do =il [ f(@)da. (1.28)
In order to analyze the representation (1.26) of Cx on L2(X)o we shall relate

it to the left regular representation of the group Ci on the Hilbert space
L%(Cy) obtained from the following Hilbert space square norm on functions,

II€|I§=/C [€(9)I* (1 +10g? |g])*/? d*g (1.29)



where we have normalized the Haar measure of the multiplicative group Cj,
with module,

| ]:Cr — R} (1.30)
in such a way that (cf. [24])

/ d*g ~logA when A — +oco. (1.31)
lgl€[1,A]

The left regular representation V' of Cy on L%(Cy) is

(V(a)€)(9) =€(a'g) Vg,a€Ck. (1.32)

Note that because of the weight (1 + log? |z|)%/2, this representation is not
unitary but it satisfies the growth estimate

IV (9)ll = 0(log|g))*/* when |g] — oo (1.33)
which follows from the inequality (valid for u,v € R)
plu+v) <272 p(u) p(v) , plu) = (1 +%)2. (1.34)

We let E be the linear isometry from L%(X)o into L2(Ck) given by the
equality,

E(f)(9) =19I"*>" flag) VgeC. (1.35)
q€k*

By comparing (1.24) with (1.29) we see that F is an isometry and the factor
lg|'/? is dictated by comparing the measures |g|d*g of (1.24) with d*g of
(1.29).
One has E(U(a) f) (9) = |9/'* T- (U(a) f) (ag) = |9|"/* Ty~ f(a™ qg)
= la|'/2|a™" g|'/? ¥k flga™g) = |a['/2(V(a) E(f)) (9)-
Thus,
EU(a) = |a|'?V(a) E. (1.36)

This equivariance shows that the range of E in L2(Cy) is a closed invariant
subspace for the representation V.

The following theorem and its corollary shows that the cokernel H =
L%(Cy)/ Im(E) of the isometry E plays the role of the Polya-Hilbert space.
Since Im F is invariant under the representation V we let W be the corre-
sponding representation of C on H.

The Abelian locally compact group Cj is (non canonically) isomorphic
to K x N where

K={geCy; |g|=1}, N=range||CR}. (1.37)



For number fields one has N = R’ while for fields of non zero characteristic
N =~ Z is the subgroup ¢* C R .(Where g = p’ is the cardinality of the field
of constants).

We choose (non canonically) an isomorphism

Cr~KxN. (1.38)
By construction the representation W satisfies (using (1.33)),
IW (9)Il = 0(log |g])*/2 (1.39)

and its restriction to K is unitary. Thus H splits as a canonical direct sum
of pairwise orthogonal subspaces,

H= EB;? Hy, Hy ={&; W(9)é=x(9)¢, Vge K} (1.40)
X€E

where x runs through the Pontrjagin dual group of K, which is the discrete
Abelian group K of characters of K. Using the non canonical isomorphism
(1.38), i.e. the corresponding inclusion N C Cj one can now restrict the
representation W to any of the sectors H,. When char(k) > 0, then N ~ Z
and the condition (1.39) shows that the action of N on H, is given by a
single operator with unitary spectrum. (One uses the spectral radius for-
mula |Spec w| = Lim || w"||'/".) When Char(k) = 0, we are dealing with an
action of Rt ~ R on #, and the condition (1.39) shows that this representa-
tion is generated by a closed unbounded operator D with purely imaginary
spectrum. The resolvent Ry = (D — A\)~! is given, for ReA > 0, by the
equality

o0
sz/ Wy(e®) e ds (1.41)
0

and for Re A < 0 by,
Ry = / W, (e=*) e ds (1.42)
0

while the operator D is defined by
1 .
D¢ —21_1)1(1) - (Wy(ef) = 1)¢€. (1.43)

Theorem 1. Let x € f{\, 0 > 1, Hy and D be as above. Then D has dis-
crete spectrum, Sp D C 1R is the set of zeros of the L function with Grossen-
character X which have real part equal to %; p€SpD & L (52, % + p) =0
and p € 1R, where X is the unique extension of x to Ck which is equal to 1
on N. Moreover the multiplicity of p in Sp D is equal to the largest integer
n < IT“L‘S , n < multiplicity of % + p as a zero of L.
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Corollary 2. For any Schwartz function h € S(Cy,) the operator W (k) =
S W(g) h(g)d* g in H is of trace class, and its trace is given by

Trace W (h) = Z h(x, p) (1.44)
L(X»%+p)=0
PEIR
where the multiplicity is counted as in Theorem 1 and where the Fourier
transform h of h is defined by,

Al p) = [ hw () d u. (1.45)

Note that we did not have to define the L functions before stating the
theorem, which shows that the pair

(Hx, D) (1.46)

certainly qualifies as a Polya-Hilbert space.

The case of the Riemann zeta function corresponds to the trivial charac-
ter x = 1 for the global field k¥ = Q of rational numbers.

In general the zeros of the L functions can have multiplicity but one
expects that for a fixed Grossencharacter x this multiplicity is bounded, so
that for a large enough value of § the spectral multiplicity of D will be the
right one. When the characteristic of k is > 0 this is certainly true.

If we modify the choice of non canonical isomorphism (1.38) this modifies
the operator D by

D'=D—is (1.47)

where s € R is determined by the equality
X(9) =X(9)lgl'* Vg€C. (1.48)
The coherence of the statement of the theorem is insured by
L(X',z) = L(X,z+1is) VzeC. (1.49)

When the zeros of L have multiplicity and ¢ is large enough the operator
D is not semisimple and has a non trivial Jordan form. This is compatible
with the almost unitary condition (1.39) but not with skew symmetry for
D.

The proof of theorem 1 [7] is based on the distribution theoretic inter-
pretation by A. Weil [23] of the idea of Tate and Iwasawa on the functional
equation. Our construction should be compared with [3] and [25].
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As we expected from (1.16), the Polya-Hilbert space H appears as a
cokernel. Since we obtain the Hilbert space L2(X)o by imposing two linear
conditions on S(A),

0 S(A)e = S(4) SCcacl) -0 (1.50)
we shall define L2(X) so that it fits in an exact sequence of Cy-modules

0— L3(X)y = L3(X) - Ca®C(1) = 0. (1.51)

We can then use the exact sequence of Ck-modules
0— L3(X)o — L3(Cy) > H -0 (1.52)

together with Corollary 2 to compute in a formal manner what the character
of the module L3(X) should be. Using (1.51) and (1.52) we obtain,

"Trace” (U(h)) = h(0) + k(1) — > h(x,p) +coh(1) (1.53)

L(x,p)=0
Rep:%

where h(x, p) is defined by Corollary 2 and

U(h) = /C Ulg) h(g)d" g (1.54)

while the test function A is in a suitable function space. Note that the trace
on the left hand side of (1.53) only makes sense after a suitable regularization
since the left regular representation of Cj is not traceable. This situation
is similar to the one encountered by Atiyah and Bott [1] in their proof of
the Lefchetz formula. In particular it is important to deal not with Hilbert
spaces but rather with nuclear spaces in the sense of Grothendieck. The
point being that the Schwartz kernel theorem is then available and one can
at least talk about the integral of the diagonal values of the Schwartz kernels
as a problem of product of distributions. In our context this is achieved by
letting d go to oo, i.e. by considering

S(X)=n L} (X). (1.55)

This space is locally nuclear for the action of Cx. In particular the Schwartz
kernel theorem applies to the operators U (h).
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2 The distribution trace formula for flows on man-
ifolds

In order to understand how the left hand side of (1.53) should be computed
we shall first give a leisurely account of the much easier but analogous com-
putation of the distribution theoretic trace for flows on manifolds,which is a
variation on the theme of [1]. We just follow Guillemin Sternberg [10] and
extract from [10] the relevant case for our discussion.
Recall that given a vector space E over R, dim F = n, a density is a map,
p € |E|,
p:\"E—>C (2.1)

such that p(Av) = |A| p(v) VAeER

Given alinearmap T : E — F welet |T| : |[F| — | E| be the corresponding
linear map,it depends contravariantly on 7.

Given a manifold M and p € C®(M, |TM|) one has a canonical integral,

/pEC. (2.2)

Given a vector bundle L on M one defines the generalized sections on M as
the dual space of CX(M,L* ® |TM|)

C™°(M,L) = dual of C(M,L* ® | TM|) (2.3)
where L* is the dual bundle. One has a natural inclusion,
C*®(M,L)Cc C™*°(M, L) (2.4)
given by the pairing
o€ C®(M,L), s € CX(M,L* ® [TM|) - /(s,a) (2.5)

where (s,0) is viewed as a density, (s,0) € C® (M, |TM]|).
One has a similar notion of generalized section with compact support.
Given a smooth map ¢ : X — Y, then if ¢ is proper, it gives a (con-
travariantly) associated map

@*: C(Y, L) = CZ(X, 9" (L)) » (¢ €)(z) = £(p(2)) (2.6)

where ¢*(L) is the pull back of the vector bundle L.

Thus, given a linear form on C°(X, ¢*(L)) one has a (covariantly) as-
sociated linear form on C¢°(Y,L). In particular with L trivial we see that
given a generalized density p € C~*°(X,|T’|) one has a push forward

p.(p) € CT=(Y,[TY) (2.7)



13

with (p.(p),€) = (p,p* &) V&€ CX(X).

Next, if ¢ is a fibration and p € C°(X,|T|) is a density then one can
integrate p along the fibers, the obtained density on Y, ¢.(p) is given as in
(2.7) by

(p«(p), f) = (o, f) VfeCT(Y) (2.8)

but the point is that it is not only a generalized section but a smooth section
ex(p) € CZ(Y,[T)).

It follows that if f € CT°°(Y") is a generalized function, then one obtains
a generalized function ¢*(f) on X by,

(0" (£):p) = (frox(p)) VP e CO(X,IT)). (2.9)

In general,the pullback ¢*(f) continues to make sense provided the following
transversality condition holds,

d(e*(1)) #0 Vie WF(f). (2.10)

where WF(f) is the wave front set of f [10]. The next point is the con-
struction of the generalized section of a vector bundle L on a manifold X
associated to a submanifold Z C X and a symbol,

o€ C®(Z,L|N}|). (2.11)

where N7 is the normal bundle of Z. The construction is the same as that of
the current of integration on a cycle. Given ¢ € C¢°(X, L*®|T), the product
0&/Z is a density on Z, since it is a section of |Tz| = |Tx| ® |[N;|.One can
thus integrate it over Z. When Z = X one has N} = {0} and |N7| has a
canonical section, so that the current associated to o is just given by (2.5).
When Z = pt is a single point z € X a generalized section of L given by a
Dirac distribution at x requires not only a vector {; € L, but also a dual
density, i.e. a volume multivector v € |Ty|.

Now let ¢ : X = Y with Z a submanifold of Y and o as in (2.11).

Let us assume that ¢ is transverse to Z, so that for each z € X with
y = p(z) € Z one has

Px (TI) =+ Tw(z)(Z) = Ty Y. (212)

Let
e ={X €Ty, p«(X) € Ty(2)}. (2.13)

Then ¢, gives a canonical isomorphism,

0u : To(X) /72 = Ty(Y)/T,(2Z) = Ny(Z). (2.14)



