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PREFACE,

There is a great deal of interest in extending
nondestructive technologies beyond the location and
identification of cracks and voids. Specifically there is
growing interest in the application of nondestructive
evaluation (NDE) to the measurement of physical and
mechanical properties of materials. The measurement of
materials properties 1is often referred to as materials
characterization; thus nondestructive techniques applied to
characterization become nondestructive characterization
(NDC) .

There are a number of meetings, proceedings and journals
focused upon nondestructive technologies and the detection
and identification of cracks and voids. However, the series
of symposia, of which these proceedings represent the fourth,
are the only meetings uniquely focused upon nondestructive
characterization. Moreover, these symposia are especially
concerned with stimulating communication between the
materials, mechanical and manufacturing engineer and the NDE
technology oriented engineer and scientist. These symposia
recognize that it is the welding of these areas of expertise
that is necessary for practical development and application
of NDC technology to measurements of components for in-
service life time and sensor technology for intelligent
processing of materials.

These proceedings are from the fourth international
symposia and are edited by C.O0. Ruud, J. F. Bussiere and R.E.
Green, Jr. The dates, places, etc of the symposia held to
date area as follows: ’

TITLE: Symposia on Nondestructive Methods for
Material Property Determination
DATES: April 6-8, 1983
PLACE: Hershey, PA, USA
CHAIRPERSONS: C.0. Ruud and R.E. Green, Jr.

TITLE: Second International Symposia on the
’ Nondestructive Characterization of Materials
DATES: July 21-23, 1986
PLACE: Montreal, Quebec, CANADA
CHAIRPERSONS: J.F. Bussiere, R.E. Green, Jr., J.P. Mouchalin
and C.0. Ruud
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ACCURATE STRUCTURAL CHARACTERIZATION OF ZtN COATINGS AND EPITAXIAL
LAYERS BY X-RAY DIFFRACTION USING THE DOSOPHATEX SYSTEM

R.Y.Fillit*,A.J.Perry+,J.Pol Dodelet?, G.Perrier®, and R.Philippe®

*ENS des Mines de Saint-Etienne 42100 (France)
+GTE Valenite Corporation Troy MI48084 (USA)
AINRS Energie Varennes (Canada)
°TJUT Saint-Etienne 42100 (France)

INTRODUCTION

Thin film characterization by X-Ray methods is often difficult because
of the problems of preferred crystal orientations and residual stresses. For
example, it is well known that coatings made by physical vapor deposition
are very strongly textured so that measurements of residual stress by
classical X-Ray methods are very inaccurate. Furthermore, the
characterization of epitaxial thin layers of semi-conductors requires very
accurate determination of crystal orientations and interfacial misfits.

A new diffractometer! has been developed to form a multipurpose 4-
circle assembly (o, 26, ¢, y), the different rotational positions of which are
selected by computer driven high precision and high speed stepping motors
(Fig.1). Depending on the type of angular scanning selected, as well as the
data processing and acquisition software, the following analysis may be
rapidly performed on our system :

* Identification of textured phases,

* Volume fraction determination,

* Texture analysis by pole figures and Orientation Distribution function
(ODF),

* Single crystal, or epitaxial layer orientations,

* Residual stress measurements (by psi setup),

* Grazing X-ray analysis of ultra-thin layers.

In fact these analyses complement each other and enable us to
undertake any type of complex research. Here we shall present a few
applications.

A- PHASE IDENTIFICATION

This is a basic analysis for materials characterization, which must
precede all other analyses and must be perfect : all the peaks {hkl} of all the
existing phases of the sample must be detected. Usually the well-known
disturbing effects of texture lead to less accurate results.

In standard analyses of a single crystal of {111} oriented silicon, only
the {111} peak and its multiples are detected (Fig.2).

Nondestructive Characterization of Materials IV -
Edited by C.O. Ruud et al., Plenum Press, New York, 1991 1



Fig. 1. The 4 circle assembly (a, 26, ¢, ¥) of the Dosophatex system.

m
- 333
A 222
11 (B) e
511
220 311
;331 422
222 400 &
- \—20 30— “——40——"—5p 60

Fig. 2. ©0-20 diagrams of a single crystal of Silicon oriented (111)
(A) : Standard analysis.
(B) : Dosophatex analysis which performs integration
over the range ¢ (0°-360°) and ¥ (* 60°).



On the other hand, using our system, due to a rapid sample rotation
and oscillation, it is rendered isotropic with respect to the analysis : all the
{hkl)} peaks appear.

One of the main advantages of our system consists in the analysis of
new phases?.

B- QUANTITATIVE ANALYSIS

Determining the volume fraction of the phases of a multi-phased
material is fundamental for knowledge of its strength properties or resistance
to corrosion for example. With standard analyses, the effects of texture,
which are almost always present, render quantitative phase analysis very
difficult and rarely performed. But, with our system quantitative analysis is
a frequent application.

Dosophatex enables one to solve problems as complex as determining
the volume fraction of monoclinic and tetragonal zirconia in zirconia-
toughened alumina ceramics3. This quantitative analysis is fundamental to
understaud toughening mechanisms. Dosophatex analysis is a general
method capable of performing volume fraction determination of «, 7y and
carbides phases in high-speed steels where 6 to 7 phases are associated,
while producing results to within 1 % ! Of course phase structure must be
perfectly known in order to calculate theoretical intensities in connection
with geometry assembly and for the wavelength used.

C - STRESS DETERMIN ATION

We shall present the possibilities our system offers by studying ZrN
film deposited to a thickness of 5 pm onto stainless steel then annealed at
900° 1 hour?.

In order to avoid the problem of an evolution in the composition with
respect to the depth analysis in the deposit, we selected a deposit offering
the best possible homogeneity, by means of preliminary Auger and electron
probes>.6 analysis.

The phase analysis was performed,using Cobalt Ka radiation, in order
to select all the ZrN peaks {hkl} which did not overlap those of the
austenitic steel substrate (Fig.3).

Moreover, for deformation measurements, we selected Chromium Ka
radiation to limit as much as possible the analysis depth. We observe linear
strain versus sinZ¢ plots (sspp) on each plane considered (Fig.4) showing a
strong biaxial compressive stress on the surface of the deposit. To calculate
the stress, we used a Young's modulus, of 460,000 MPa, and a Poisson's
ratio 0.2. Also, since ithe X-ray elastic anisotropy was not known, we
attempted to determine it directly : the measurement must give the same
stress value, regardless of the {hkl) peak considered, if we enter the correct
X-ray elastic anisotropy into the calculation?.8.

The compressive stresses for the different planes considered are
calculated by varying the X-ray elastic anisotropy (Axc) (Fig.5). The curves
roughly intersect at the same point, which according to the least square error
method, gives us for Axc the value of 0.83. By taking this Axc value, we
find that the surface compressive stress is ¢ =-7,000 MPa.

On the other hand, with more penetrating Copper Ko radiation passing
entirely through the deposit, the deformation curves are no longer linear
(Fig.6) and demonstrate that shear stresses exist®. This is directly linked to
the stress gradient through the deposit, which may be -explained by the
different cooling rates between the substrate and the deposit.
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D- TEXTURE ANALYSIS

Until now, we have considered textures with respect to their negative
aspects on the accuracy of results, and we have presented a way of
minimizing these negative effects.

However, it is equally essential to perfectly determine these textures
in order, for example, to calculate the behavior of materials that are
submitted to mechanical deformations.

We shall consider an extreme case of analysing epitaxial layers for the
manufacture of photo-voltaic cells!9.
Two types of layers were analysed :

(1) ZnSe layers on (100) oriented GaAs single crystal substrates. The
purpose was to develop epitaxy via their isomorphism, which differs
only by 0.3 %. Note, however, that ZnSe also crystallizes to a
metastable hexagonal phase!!

(2) GaAs layers on Ge single crystal substrate oriented (100). The
isomorphism in this case is identical to within 0.07 %.

These layers were developed according to the close space vapor trans-
port method (CSVT)!2. This method is simple, low cost and offers the
advantage of a high yield capable of reaching 90 %. We select two ZnSe
layers through their morphology using SEM

(1) layer #1 was a non-bonding deposit and spontaneous debonding
occured ; the interface between the layer and the substrat was smooth.

(2) layer #2 deposit was a highly bonding deposit.

Now, it is important to verify epitaxial relations, if they exist. In
general, epitaxy is checked by means of Rocking Curves, which is a very

high accurac4y method, but which is used only to check simple epitaxial
relations13.14,

For more complex cases, with possibility of multiple epitaxial phases,
the pole figure still remains the most efficient means for determining
crystallographic orientation relations between the substrate and the deposit.
For this operation, we developed an original method using high-resolution
ultra-rapid pole figures (up to y = 80° for which we performed the
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