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PREFACE

Two books covering the field of modern optics have been prepared in
this series ‘“‘Methods of Experimental Physics”, separating the material into
two parts, one with the title “Geometrical and Instrumental Optics”, and
the other with the title “Physical Optics and Light Measurements”.

The purpose of these books is to help the scientist or engineer who is
not a specialist in optics to understand the main principles involved in
optical instrumentation and experimental optics.

Our main intent is to provide the reader with some of the interdisciplinary
understanding that is so essential in modern instrument design, develop-
ment, and manufacture. Coherent optical processing and holography are
also considered, since they play a very important role in contemporary
optical instrumentation. Radiometry, detectors, and charge coupled imaging
devices are also described in these volumes, because of their great practical
importance in modern optics. Basic and theoretical optics, like laser physics,
nonlinear optics and spectroscopy are not described, however, because they
are not normally considered relevant to optical instrumentation.

In this volume, “Physical Optics and Light Measurements”, Chapter One
describes the theory and applications of interference and interferometers.
Chapter Two studies diffraction, its basic theoretical fundamentals, and
some practical applications. Polarized light and its uses are considered in
Chapter Three. Holography and holographic methods are studied in detail
in Chapter Four. The photometric and radiometric principles are covered
in Chapter Five. Finally, Chapter Six considers detectors.

There might be some overlapping of topics covered in different chapters,
but this is desirable, since the points of view of different authors, treating
different subjects, may be quite instructive and useful for a better under-
standing of the material.

This book has been the result of the efforts of many people. Professor
H. W. Palmer started this project and spent many fruitful hours on it.
Unfortunately, he did not have the time to finish his editorial work due to
previous important commitments. I would like to express my great appreci-
ation of and thanks to Professor Palmer and all of the authors, without
whom this book could never have been finished. I also thank Dr. R. E.
Hopkins and many friends and colleagues for their help and encouragement.
Finally, I appreciate the great understanding of my family, mainly my wife
Isabel, for the many hours taken away from them during the preparation
of these books.

DANIEL MALACARA
Leon, Gto. Mexico.
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1. INTERFERENCE

Daniel Malacara

Centro de Investigaciones en Optica A.C.
Apdo. Postal 948
37000 Leon, Gto. Mexico.

1.1. Introduction

The luminous phenomenon called interference is a direct consequence
of the wave nature of light. Using the interference of light, we can make
interferometers, which are instruments that use this phenomenon to measure
very accurately many physical parameters. The general subject of interfer-
ence has been treated extensively in many classical textbooks on optics like
those by Born and Wolf,' Cook,” Frangon,’ Candler,”* Steel,’ and Tolansky.®
There are also special chapters on the subject of interference in many
advanced books like those by Baird,” Baird and Hanes,® and Dyson,’ and
others. This chapter describes very briefly the interference phenomenon and
some interferometers. Special emphasis is placed on the applications of
these useful instruments, which have played a very important role in the
development of physics due to their extremely high accuracy.

1.1.1. Methods to Obtain Interference Fringes

To obtain interference fringes, the phases of the two interfering waves
must be synchronized, that is, they must be coherent. Before the advent of
lasers, this was possible only if both waves originated from the same light
source. In order to produce two waves from a single source, we must have
either a division of the wave front or division of its amplitude. .

Division of Wave Front. This class of interference is produced when
the two interfering wave fronts are taken from different portions of the
original wave front. The typical examples are Young’s experiment, the
Fresnel biprism, and Lloyd’s mirror, but there are many others.

Young’s double-slit experiment is performed as shown in Fig. 1. The
lenses are not strictly necessary, but their addition makes the theory easier.
The light source S must be either a very narrow slit or a point, and lens L
collimates the light to obtain an approximately flat wave front. Normally,

1
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2 INTERFERENCE
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F1G. 1. Young's experiment. (a) Experimental arrangement and (b) Diffraction pattern.

the interference pattern would be observed at infinity, but lens L serves to
bring the pattern closer over the screen. It can be found in almost any good
textbook on optics' that the interference pattern is given by

. |7D .
I sm{T sin 0}
a7 —
I=1I,,, cos’{ —sin § } ————, 1.1
{ A St } 7D (1.1)
—sin @
A
where I,,,, is the irradiance at the center of the pattern, and 6 is the angular

deviation from the optical axis. This radiation pattern also appears with
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FIG. 2. (a) Lloyd’s mirror and (b) Fresnel biprism.

dipole antennas and radio waves. The total width of the central maximum
is given by sin 8 =A/1

The Fresnel biprism and Lloyd’s mirror also produce interference fringes
by division of the wave front, as shown in Fig. 2. If two waves are to
interfere producing fringes with good contrast, the polarization states of
both waves must be the same. This condition is always satisfied in the
Fresnel biprism. However, in Lloyd’s system, only one beam is reflected.
Therefore, the reflection coefficients and the phase shifts under reflection
must remain nearly constant over the range of incident angles used. This
is possible only near grazing incidence.
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A second reason for using grazing incidence in the Lloyd system is that
the spacing between fringes decreases rapidly as the separation between
the virtual sources S, and S, is increased. The sources must be quite close
to each other to make fringes visible, and this is possible only near grazing
incidence. If the screen in the Lloyd system is placed near the edge of the
mirror, we can observe that a dark fringe appears at this edge. This happens
because there is a phase shift upon reflection with grazing incidence. Wolfe
and Eisen'® have studied the coherence requirements in Lloyd’s mirrors.

Division of Amplitude. This class of interference occurs when both
interfering beams are obtained by division of the amplitude of the original
wave front by means of a partially reflecting optical surface. Then, both
beams travel different paths, and interference occurs when they are recom-
bined. Typical examples are Newton rings and the Michelson interferometer
described in the next section.

1.1.2. Classification of Interference Fringes

A classification for interference fringes can be made according to the way
they are observed, namely, fringes of equal thickness and fringes of equal
inclination.

Fringes of Equal Thickness. Each fringe represents the locus of all
points in which two optical surfaces (or wave fronts) have a constant
separation. This is much better understood by means of the following
example.

Consider the optical arrangement in Fig. 3 where the flat or convex surface
of one lens is placed against the flat surface of another lens. Monochromatic
light enters the first lens and impinges upon the second surface from which

observing eye
\ /‘(‘A\\

monochromatic
source

7= N\ | |

|
AR 7 2 observed fringes

F1G. 3. Arrangement to observe Newton fringes.
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some of the light is reflected. Some of the light that goes through the first
lens is reflected from the upper flat surface of the second lens. The two
reflected beams interfere constructively when the phase difference is an
integral multiple of 277. We can see that the optical path difference is twice
the surface separation. If one of the surfaces is spherical, each fringe is a
ring that represents the locus of points with equal surface separation. These
circular fringes, also called Newton rings, are a particular case of fringes
of equal thickness.

Fringes of Equal Inclination. In this case, each fringe is the locus of
points in the field of view with the same angle of the incidence 0 at the
interferometer. As an example, let us consider two parallel reflecting surfaces
as in Fig. 4. As in the previous example, the two interfering beams are
produced by division of amplitude. Fringes of equal thickness cannot be
formed because the optical path difference (OPD) is the same for the entire
field. One way to change the phase difference and hence to observe fringes
is to introduce a range of angles of incidence by using an extended light
source.

Circular fringes are observed with an angular radius 6 given by
mA
0=—1, 1.2
cos =" (1.2)

where m is an integer smaller than or equal to 2d/A.

screen
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FI1G. 4. Arrangement to produce fringes of equal inclination.




