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Preface

This book springs from lectures on degree theory given by the authors
during many years at the Departamento de Geometria y Topologia at the
Universidad Complutense de Madrid, and its definitive form corresponds
to a three-month course given at the Dipartimento di Matematica at the
Universita di Pisa during the spring of 2006. Today mapping degree is a
somewhat classical topic that appeals to geometers and topologists for its
beauty and ample range of relevant applications. Our purpose here is to
present both the history and the mathematics.

The notion of degree was discovered by the great mathematicians of
the decades around 1900: Cauchy, Poincaré, Hadamard, Brouwer, Hopf,
etc. It was then brought to maturity in the 1930s by Hopf and also by
Leray and Schauder. The theory was fully burnished between 1950 and
1970. This process is described in Chapter I. As a complement, at the
end of the book there is included an index of names of the mathematicians
who played their part in the development of mapping degree theory, many
of whom stand tallest in the history of mathematics. After the first his-
torical chapter, Chapters II, III, IV, and V are devoted to a more formal
proposition-proof discourse to define and study the concept of degree and
its applications. Chapter II gives a quick presentation of manifolds, with
special emphasis on aspects relevant to degree theory, namely regular val-
ues of differentiable mappings, tubular neighborhoods, approximation, and
orientation. Although this chapter is primarily intended to provide a review
for the reader, it includes some not so standard details, for instance con-
cerning tubular neighborhoods. The main topic, degree theory, is presented
in Chapters III and IV. In a simplified manner we can distinguish two ap-
proaches to the theory: the Brouwer-Kronecker degree and the Euclidean
degree. The first is developed in Chapter III by differential means, with a
quick diversion into the de Rham computation in cohomological terms. We
cannot help this diversion: cohomology is too appealing to skip. Among
other applications, we obtain in this chapter a differential version of the
Jordan Separation Theorem. Then, we construct the Euclidean degree in

—
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X Preface

Chapter IV. This is mainly analytic and astonishingly simple, especially
in view of its extraordinary power. We hope this partisan claim will be
acknowledged readily, once we obtain quite freely two very deep theorems:
the Invariance of Domain Theorem and the Jordan Separation Theorem,
the latter in its utmost topological generality. Finally, Chapter V is de-
voted to some of those special results in mathematics that justify a theory
by their depth and perfection: the Hopf and the Poincaré-Hopf Theorems,
with their accompaniment of consequences and comments. We state and
prove these theorems, which gives us the perfect occasion to take a glance
at tangent vector fields.

We have included an assorted collection of some 180 problems and exer-
cises distributed among the sections of Chapters II to V, none for Chapter
I due to its nature. Those problems and exercises, of various difficulty, fall
into three different classes: (i) suitable examples that help to seize the ideas
behind the theory, (ii) complements to that theory, such as variations for
different settings, additional applications, or unexpected connections with
different topics, and (iii) guides for the reader to produce complete proofs
of the classical results presented in Chapter I, once the proper machinery
is developed.

We have tried to make internal cross-references clearer by adding the
Roman chapter number to the reference, either the current chapter number
or that of a different chapter. For example, 111.6.4 refers to Proposition 6.4
in Chapter III; similarly, the reference IV.2 means Section 2 in Chapter IV.
We have also added the page number of the reference in most cases.

One essential goal of ours must be noted here: we attempt the simplest
possible presentation at the lowest technical cost. This means we restrict
ourselves to elementary methods, whatever meaning is accepted for ele-
mentary. More explicitly, we only assume the reader is acquainted with
basic ideas of differential topology, such as can be found in any text on the
calculus on manifolds.

We only hope that this book succeeds in presenting degree theory as
it deserves to be presented: we view the theory as a genuine masterpiece,
joining brilliant invention with deep understanding, all in the most accom-
plished attire of clarity. We have tried to share that view of ours with the
reader.

Los Molinos and Majadahonda E. Outerelo and J.M. Ruiz
June 2009
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Chapter I

History

In the body of mathematics, the notion of degree stands as a beautiful achievement
of topology and one of the main contributions of the twentieth century, which has
been called the century of topology. In Chapter I we try to outline how the ideas
that led to this fundamental notion of degree were sparked and came to light. It is
only natural that such a task is biased by our personal opinions and preferences.
Thus, it is likely that a specialist in, say, partial differential equations would present
the tale in a somewhat different way. All in all, a choice must be made and ours
is this:

§1. Prehistory: Gauss, Cauchy, Liouville, Sturm, Kronecker, Poincaré, Picard,
Bohl (1799-1910).

§2. Inception and formation: Hadamard, Brouwer (1910-1912).

§3. Accomplishment: Hopf, Leray, Schauder (1925-1934).

84. Renaissance and reformation: Nagumo, de Rham, Heinz (1950-1970).
§5. Awiomatization: Fiihrer, Amann, Weiss (1970-1972).

86. Further developments: Equivariant theory, infinite dimensions.

The presentation of these topics is mainly discursive and descriptive, rigorous
proofs being deferred to Chapters IT through V where there will be complete
arguments for all the most classical results presented here.

1. Prehistory

Rougly speaking, degree theory can be defined as the study of those tech-
niques that give information on the ezistence of solutions of an equation
of the form y = f(x), where z and y dwell in suitable spaces and f is a
map from one to the other. The theory also gives clues for the number
of solutions and their nature. An important particular case is that of an
equation z = f(z), where f is a map from a domain D of a linear space
into D itself: this is the so-called Fized Point Problem.

1



2 I. History

By its very nature, it is clear that the origins of degree theory should
be traced back to the first attempts to solve algebraic equations such as

a2V 4 +a, =0,

where the coefficients a; are complex numbers, a, # 0. That such an
equation always has some solution is the Fundamental Theorem of Algebra.
This result was most beloved by KARL-FRIEDRICH GAUSS (1777-1855),
who found at least four different proofs, in 1799, 1815, 1816, and 1849.
It is precisely in the first and fourth proofs where we find what can be
properly considered the first ideas of topological degree. By some properties
of algebraic curves (which were formalized only in 1933 by ALEXANDER
OSTROWSKI (1893-1986)), Gauss was able to prove that inside a circle of
big enough radius, the algebraic curve corresponding to the real part of
the polynomial shares some point with the algebraic curve corresponding
to the imaginary part. In this way the following two lines of research were
born:

Problem 1. Find the common solutions of the equations

{f(w,y) =0,
F(z,y)=0

inside a given closed planar domain, on whose border the two functions
f(z,y) and F(z,y) do not vanish simultaneously.

Problem II. Find the number of real roots of a polynomial in one variable
with real coefficients, in a given closed interval [a, b] of the real line.

The first contributions to Problem I are due to AUGUSTIN LouIls
CAUCHY (1789-1857). In a memoir presented before the Academy of Turin,
on November 17, 1831, and in the paper [Cauchy 1837a], Cauchy introduces
a new calculus that, in its own words, can be used to solve equations of any
degree.

Some parts of Cauchy’s arguments are not completely precise, and the
way these parts were made rigorous by JACQUES CHARLES FRANCOIS
STURM (1803-1855) and JOSEPH LIOUVILLE (1809-1882) is quite relevant
in the history of the analytic definition of the topological degree of a con-
tinuous mapping.

Let us describe this. The definition of the index of a function given by
Cauchy in [Cauchy 1837a] is the following:
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Let x be a real variable and f(x) a function that becomes infinite at
x = a. If the variable x increases through a, the function will either change
from negative to positive or change from positive to negative or not change
sign at all. We will say that the index of f at a is —1 in the first case,
+1 in the second, and 0 in the third. We define the integral index of f
between two given limits x = x¢ and x = x1, denoted by J2l(f), as the sum
of the indices of f corresponding to the values of x in the interval [xo, 1]
at which f becomes infinite. If f is a function in two variables, we define
the integral index of f between the limits xo,x1;y0,y1 to be the number

w050 (f) = 5 [Joa (F(own)) = T2H(f (w0)) — JE(F (21, ) + JY(f (2o, )] -
In his 1831 memoir, Cauchy obtained the index of a function by integral
techniques and residues and proved the following result:

Theorem. Let I' be a closed curve that is the contour of an area S, and
let Z(z) = X(z,y) + 1Y (z,y) be an entire function. Then

1 [ Z'(2)

2mi Jp Z(2)

dz = 1 J5=5 (X/Y)

is the number of zeros of Z(z) in S; here s stands for the arc length along
I', and 8" — ' is the length of I.

Cauchy generalized this result in a memoir published June 16, 1833, in
Turin. The generalization follows:

Theorem. Let F(z,y) and f(x,y) be two functions of the variables x,y,
continuous between the limits x = xo,x = x1,y = yo,y = y1. We denote
by &(z,y), d(z,y) the derivatives of the functions with respect to =, and by
W(x,y),¥(x,y) their derivatives with respect to y. Finally, let N be the
number of the different systems of values x,y, between the above limits,
verifying simultaneously the equations F(z,y) =0, f(z,y) = 0. Then

N =2 Jin(A),
where
Az, ) = L2 (300, 430 e, y) - U(e,)0(e,9))
F(z,y)
_ [ ,y) (8F(w y) 0f(z,y)  OF(z,y) 0f(x, y))

An elementary “proof” of this theorem appears in [Cauchy 1837b].
However, Liouville and Sturm in [Liouville-Sturm 1837] give three examples
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showing that the second theorem above above can fail. The first example
is
F(CL‘,y) = 3’72+¥/2 - ]-a
f(z,y) =y
In this example
2zy
A ==
(z,9) = — T T

and drawing around the origin a rectangle containing the circle 2% +42% = 1,
one sees that
S A) =0,

Zo ~ Yo

because A never becomes infinity on the sides of the rectangle. However,

the system
22 +9y?2—1=0,
y=0

has the two solutions (1,0),(—1,0) inside the rectangle. Liouville and
Sturm conclude their note with the following remark:

There is a theorem that can replace Cauchy’s. Let us consider a closed
contour I' on which F(z,y) and f(z,y) do not vanish simultaneously, and
let us also assume that inside this contour the function

w = &z, y)(x,y) — ¥(z,y)d(z,y)
_ OF(z,y) 0f(z,y) _OF(z,y) 0f(x,y)
ox dy Oy Ox

does not vanish at the values (z,y) at which f(z,y) and F(x,y) vanish.

In this situation, among the solutions (x,y) of the equations F(x,y) = 0,
f(z,y) =0, inside I', some correspond to positive values of w and others
to negative values of w. We denote by p1 the number of solutions of the
first kind, and by ua the number of solutions of the second kind. With this
notation we have

1
8=y —
9 M1 — U2,

where § stands for how many more times the function IJ;(( : )) changes from
positive to negative than from negative to positive, at those points in the
contour I' at which that function becomes infinite, when the contour is

traced in the positive direction.

We see that the function w is the Jacobian of the mapping (F, f) (Li-
ouville and Sturm always consider entire functions). Consequently, we find
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displayed here for the first time the importance of the sign of the functional
determinant

OF OF
8z 8y
Y=l oar o
dr  dy

when dealing with the computation of the number of solutions of the system

F(z,y) =0,
flz,y)=0
in a planar region.

Today, in the hypotheses of the Liouville-Sturm Theorem, the number
p1 — po is called the topological degree of the mapping (F, f) at the origin,
and this is the starting point for the analytic definition of degree. But this
will not take full shape until 1951.

% >k

In the later paper [Cauchy 1855], Cauchy states the Argument Principle,
which is another way to compute the indices he has defined earlier. These
results, translated into more modern terminology, read as follows.

Winding number (or index) of a planar curve around a point. Let
I’ € C be a closed oriented curve with a C! parametrization:

2(t) = z(t) +iy(t) +a, 0<t<1, 2(0) = 2(1), a€C\TI.

Then,

_ L[ ds 1 Ya@y) - ()
’L"(F’“)—%/pm—gfo 20120

1§ an integer.
This integer is called the winding number (or indez) of I' around a.

Geometrically, the winding number tells us how many times the curve
wraps around the point. In case I is only continuous, the winding number
is defined through a C! approximation I} of I', because w([1,a) remains
constant for I close enough to I

The following example illustrates this notion:
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To proceed one step further, Cauchy considers a simply connected do-
main G C C (that is, G has no holes), a holomorphic function f:G—C,
¢ = f(z), and a C! closed curve I' C G, on which f has no zeros. Then:

Argument Principle. The following formula holds:

_1 a1 [f'(z), _
’U}(f(F),O) - o7 ) C - ori Jr f(Z) dz = gw(F, ak‘)Oéka

where the ai’s are the zeros of f in the domain D bounded by I' and the
oy, ’s are their respective multiplicities.

Suppose next that I" has no self-intersection and that it has the positive
(counterclockwise) orientation. Then D is a connected domain (this is the
Jordan Separation Theorem, which we will discuss later), and w([',a) = +1
for all @ € D, so that the last formula becomes

w(f(1),0) = 3 o,
k

that is:

Theorem. The total number of zeros (counted with multiplicities) that f
has in D is the winding number of the curve f(I') around the origin.
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In general, the winding number can be negative, but we can still say
that f has at least |w(f(I"),0)| zeros in the domain bounded by I".

Let us now turn to Problem II. The first full solution is due to Sturm.
In 1829 and 1835 he gave an algorithm to find the exact number of dis-
tinct real roots of a polynomial. The theorem was later generalized by
CARL GuUSTAV JACOB JACOBI (1804-1851), CHARLES HERMITE (1822-
1901), and JAMES JOSEPH SYLVESTER (1814-1897).

Exploring the topological content of Sylvester’s article [Sylvester 1853],
LEoPOLD KRONECKER (1823-1891) introduces in his papers [Kronecker
1869a] and [Kronecker 1869b] a method that extends Sturm’s. Indeed, at
the end of his work Kronecker writes:

In my research developed in this article, I started from a theorem by
Sturm. A gemeralization of that result was found by Hermite some time ago,
but I have been able to extend the continued fraction algorithm developed by
Sylvester to further widen Sturm’s theorem.

Let us describe Kronecker’s contribution. He starts with the following
definition:

Regular function systems. A regular function system consists of n + 1
real functions Fy, Fi,..., F, in n real variables z1, ..., x,, such that

(a) Fy, F1,..., F, are continuous and have no common zeros. They admit
partial derivatives with respect to all n variables, and those deriva-
tives take finite values.

(b) The functions Fy, FY, ..., F, take positive and negative values. More-
over, each function takes positive (resp., negative) values infinitely
often.

(¢) The domains {F; < 0},7 =0,...,n, represent n-dimensional varieties
that only contain finite values of the variables z1,...,x,.

(d) No functional determinant

kim0, . k=0,1,...,n,

j=1...,n

OF;
ox 7

vanishes at any zero of the system Fy, #0,Fg =F, =---=F, =0.
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(e) The common zero set of any chosen n— 1 functions among Fy, Fy, .. .,

F, is a C! curve.

Then Kronecker looks at the orientations of the C! curve involved in
this definition (condition (e) above). He considers this part basic in his
research on systems of functions in several variables:

Orientation Principle. Kronecker chooses for every pair (k, £,k <{ an
orientation of the C! curve (recall (e) above)

F(k,f) ={zx € R": Fi(z) =0 fori# k,{}.

This orientation is denoted by |k¢|; he then puts |¢k| = —|k)|.

Next, he defines:

(a)

A point e € F'(k,£) N {F} = 0} is called an incoming (eingang) point
of F(k,£) (in {x € R™: Fi(z) - Fy(z) < 0}) if the following condition
holds true: walking the curve F(k,£) as oriented by |k¢|, we leave the
set {zx € R : Fy(x) - Fy(x) > 0} at the point e and enter {z € R™ :
Fi(z) - Fy(z) < 0}.

The set of all these incoming points e is denoted by E(k,0).

A point a € F(k,£) N {Fy = 0} is called an outgoing (ausgang) point
of F(k,£) (off {x € R" : Fy(z)- Fy(z) < 0}) if the following condition
holds true: walking the curve F(k,£) as oriented by |kf|, we leave the
set {x € R™ : Fi(z) - Fy(x) < 0} at the point a and enter {z € R™ :
Fi(z) - Fp(z) > 0}.

The set of all these outgoing points a is denoted by A(k, £).

After the preceding preparation, Kronecker shows that the number

#E(k,€) — #A(k, £)

is even and does not depend on the indices k, ¢, and then he defines:

Kronecker characteristic. The characteristic of the reqular function
system Fy, Fy, ..., F, is the integer

X(Fo, F1,. .., Fn) = 5 (#E(k,€) — #A(k, 0)).

It is convenient to stress that in the course of his proof of this fact



