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PREFACE

The second edition was motivated by comments from several users and readers
that the chapters on statistical inference and stochastic processes would benefit
from substantial extensions. To accomplish such extensions, I decided to bring in
Mikael Andersson, an old friend and colleague from graduate school. Being five
days my junior, he brought a vigorous and youthful perspective to the task and I am
very pleased with the outcome. Below, Mikael will outline the major changes and
additions introduced in the second edition.

PETER OLOFSSON
San Antonio, Texas, 2011

The chapter on statistical inference has been extended, reorganized, and split into
two new chapters. Chapter 6 introduces the principles and concepts behind standard
methods of statistical inference in general, while the important case of normally
distributed samples is treated separately in Chapter 7. This is a somewhat different
structure compared to most other textbooks in statistics since common methods such
ast tests and linear regression come rather late in the text. According to my experience,
if methods based on normal samples are presented too early in a course, they tend
to overshadow other approaches such as nonparametric and Bayesian methods and
students become less aware that these alternatives exist.

New additions in Chapter 6 include consistency of point estimators, large
sample theory, bootstrap simulation, multiple hypothesis testing, Fisher’s exact test,
Kolmogorov—Smirnov test and nonparametric confidence intervals, as well as a
discussion of informative versus noninformative priors and credibility intervals in
Section 6.8.
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Chapter 7 starts with a detailed treatment of sampling distributions, such as the ,
chi-square, and F distributions, derived from the normal distribution. There are also
new sections introducing one-way analysis of variance and the general linear model.

Chapter 8 has been expanded to include three new sections on martingales, renewal
processes, and Brownian motion. These areas are of great importance in probabil-
ity theory and statistics, but since they are based on quite extensive and advanced
mathematical theory, we offer only a brief introduction here.

It has been a great privilege, responsibility, and pleasure to have had the opportunity
to work with such an esteemed colleague and good friend. Finally, the joint project
that we dreamed about during graduate school has come to fruition!

I also have a victim of preoccupation and absentmindedness, my beloved Eva whom
I want to thank for her support and all the love and friendship we have shared and
will continue to share for many days to come.

MIKAEL ANDERSSON
Stockholm, Sweden, 2011



PREFACE TO THE FIRST EDITION

THE BOOK

In November 2003, I was completing a review of an undergraduate textbook in prob-
ability and statistics. In the enclosed evaluation sheet was the question “Have you
ever considered writing a textbook?” and I suddenly realized that the answer was
“Yes,” and had been for quite some time. For several years I had been teaching a
course on calculus-based probability and statistics mainly for mathematics, science,
and engineering students. Other than the basic probability theory, my goal was to
include topics from two areas: statistical inference and stochastic processes. For many
students this was the only probability/statistics course they would ever take, and I
found it desirable that they were familiar with confidence intervals and the maximum
likelihood method, as well as Markov chains and queueing theory. While there were
plenty of books covering one area or the other, it was surprisingly difficult to find one
that covered both in a satisfying way and on the appropriate level of difficulty. My
solution was to choose one textbook and supplement it with lecture notes in the area
that was missing. As I changed texts often, plenty of lecture notes accumulated and it
seemed like a good idea to organize them into a textbook. I was pleased to learn that
the good people at Wiley agreed.

It is now more than a year later, and the book has been written. The first three
chapters develop probability theory and introduce the axioms of probability, random
variables, and joint distributions. The following two chapters are shorter and of an
“introduction to” nature: Chapter 4 on limit theorems and Chapter 5 on simulation.
Statistical inference is treated in Chapter 6, which includes a section on Bayesian
statistics, too often a neglected topic in undergraduate texts. Finally, in Chapter 7,
Markov chains in discrete and continuous time are introduced. The reference list at
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the end of the book is by no means intended to be comprehensive; rather, it is a
subjective selection of the useful and the entertaining.

Throughout the text I have tried to convey an intuitive understanding of concepts
and results, which is why a definition or a proposition is often preceded by a short
discussion or a motivating example. I have also attempted to make the exposition
entertaining by choosing examples from the rich source of fun and thought-provoking
probability problems. The data sets used in the statistics chapter are of three different
kinds: real, fake but realistic, and unrealistic but illustrative.

THE PEOPLE

Most textbook authors start by thanking their spouses. I know now that this is far more
than a formality, and I would like to thank AAxpAvn not only for patiently putting
up with irregular work hours and an absentmindedness greater than usual but also for
valuable comments on the aesthetics of the manuscript.

A number of people have commented on various parts and aspects of the book.
First, I would like to thank Olle Higgstrom at Chalmers University of Technology,
Goteborg, Sweden for valuable comments on all chapters. His remarks are always
accurate and insightful, and never obscured by unnecessary politeness. Second, I
would like to thank Kjell Doksum at the University of Wisconsin for a very helpful
review of the statistics chapter. I have also enjoyed the Bayesian enthusiasm of Peter
Miiller at the University of Texas MD Anderson Cancer Center.

Other people who have commented on parts of the book or been otherwise
helpful are my colleagues Dennis Cox, Kathy Ensor, Rudy Guerra, Marek Kimmel,
Rolf Riedi, Javier Rojo, David W. Scott, and Jim Thompson at Rice University;
Prof. Dr. R.W.J. Meester at Vrije Universiteit, Amsterdam, The Netherlands; Timo
Seppiildinen at the University of Wisconsin; Tom English at Behrend College;
Robert Lund at Clemson University; and Jared Martin at Shell Exploration and
Production. For help with solutions to problems, I am grateful to several bright Rice
graduate students: Blair Christian, Julie Cong, Talithia Daniel, Ginger Davis, Li
Deng, Gretchen Fix, Hector Flores, Garrett Fox, Darrin Gershman, Jason Gershman,
Shu Han, Shannon Neeley, Rick Ott, Galen Papkov, Bo Peng, Zhaoxia Yu, and
Jenny Zhang. Thanks to Mikael Andersson at Stockholm University, Sweden for
contributions to the problem sections, and to Patrick King at ODS—Petrodata, Inc.
for providing data with a distinct Texas flavor: oil rig charter rates. At Wiley, I would
like to thank Steve Quigley, Susanne Steitz, and Kellsee Chu for always promptly
answering my questions. Finally, thanks to John Haigh, John Allen Paulos, Jeffrey
E. Steif, and an anonymous Dutchman for agreeing to appear and be mildly mocked
in footnotes.

PETER OLOFSSON
Houston, Texas, 2005
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BASIC PROBABILITY THEORY

1.1 INTRODUCTION

Probability theory is the mathematics of randomness. This statement immediately
invites the question “What is randomness?”” This is a deep question that we cannot
attempt to answer without invoking the disciplines of philosophy, psychology, math-
ematical complexity theory, and quantum physics, and still there would most likely
be no completely satisfactory answer. For our purposes, an informal definition of ran-
domness as “what happens in a situation where we cannot predict the outcome with
certainty” is sufficient. In many cases, this might simply mean lack of information.
For example, if we flip a coin, we might think of the outcome as random. It will be
either heads or tails, but we cannot say which, and if the coin is fair, we believe that
both outcomes are equally likely. However, if we knew the force from the fingers at
the flip, weight and shape of the coin, material and shape of the table surface, and
several other parameters, we would be able to predict the outcome with certainty,
according to the laws of physics. In this case we use randomness as a way to describe
uncertainty due to lack of information.!

Next question: “What is probability?”” There are two main interpretations of prob-
ability, one that could be termed “objective” and the other “subjective.” The first is

ITo quote the French mathematician Pierre-Simon Laplace, one of the first to develop a mathematical
theory of probability: “Probability is composed partly of our ignorance, partly of our knowledge.”

Probability, Statistics, and Stochastic Processes, Second Edition. Peter Olofsson and Mikael Andersson.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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FIGURE 1.1 Consecutive relative frequencies of heads in 100 coin flips.

the interpretation of a probability as a limit of relative frequencies; the second, as a
degree of belief. Let us briefly describe each of these.

For the first interpretation, suppose that we have an experiment where we are
interested in a particular outcome. We can repeat the experiment over and over and
each time record whether we got the outcome of interest. As we proceed, we count
the number of times that we got our outcome and divide this number by the number of
times that we performed the experiment. The resulting ratio is the relative frequency
of our outcome. As it can be observed empirically that such relative frequencies tend
to stabilize as the number of repetitions of the experiment grows, we might think of
the limit of the relative frequencies as the probability of the outcome. In mathematical
notation, if we consider n repetitions of the experiment and if S, of these gave our
outcome, then the relative frequency would be f, = S,/n, and we might say that
the probability equals lim,_, » f,. Figure 1.1 shows a plot of the relative frequency
of heads in a computer simulation of 100 hundred coin flips. Notice how there is
significant variation in the beginning but how the relative frequency settles in toward
% quickly.

The second interpretation, probability as a degree of belief, is not as easily quan-
tified but has obvious intuitive appeal. In many cases, it overlaps with the previous
interpretation, for example, the coin flip. If we are asked to quantify our degree of
belief that a coin flip gives heads, where 0 means “impossible” and 1 means “with
certainty,” we would probably settle for % unless we have some specific reason to
believe that the coin is not fair. In some cases it is not possible to repeat the experi-
ment in practice, but we can still imagine a sequence of repetitions. For example, in
a weather forecast you will often hear statements like “there is a 30% chance of rain
tomorrow.” Of course, we cannot repeat the experiment; either it rains tomorrow or it
does not. The 30% is the meteorologist’s measure of the chance of rain. There is still
a connection to the relative frequency approach; we can imagine a sequence of days
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with similar weather conditions, same time of year, and so on, and that in roughly
30% of the cases, it rains the following day.

The “degree of belief” approach becomes less clear for statements such as “the
Riemann hypothesis is true” or “there is life on other planets.” Obviously, these
are statements that are either true or false, but we do not know which, and it is not
unreasonable to use probabilities to express how strongly we believe in their truth. It is
also obvious that different individuals may assign completely different probabilities.

How, then, do we actually define a probability? Instead of trying to use any of
these interpretations, we will state a strict mathematical definition of probability. The
interpretations are still valid to develop intuition for the situation at hand, but instead
of, for example, assuming that relative frequencies stabilize, we will be able to prove
that they do, within our theory.

1.2 SAMPLE SPACES AND EVENTS

As mentioned in the introduction, probability theory is a mathematical theory to
describe and analyze situations where randomness or uncertainty are present. Any
specific such situation will be referred to as a random experiment. We use the term
“experiment” in a wide sense here; it could mean an actual physical experiment such
as flipping a coin or rolling a die, but it could also be a situation where we simply
observe something, such as the price of a stock at a given time, the amount of rain in
Houston in September, or the number of spam emails we receive in a day. After the
experiment is over, we call the result an outcome. For any given experiment, there is
a set of possible outcomes, and we state the following definition.

Definition 1.1. The set of all possible outcomes in a random experiment is called
the sample space, denoted S.

Here are some examples of random experiments and their associated sample spaces.

Example 1.1. Roll a die and observe the number.
Here we can get the numbers 1 through 6, and hence the sample space is
S=1{1,2,3,4,5,6}
a

Example 1.2. Roll a die repeatedly and count the number of rolls it takes until the
first 6 appears.

Since the first 6 may come in the first roll, 1 is a possible outcome. Also, we may fail
to get 6 in the first roll and then get 6 in the second, so 2 is also a possible outcome. If
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we continue this argument we realize that any positive integer is a possible outcome
and the sample space is

§ el B bl

the set of positive integers. O
Example 1.3. Turn on alightbulb and measure its lifetime, that is, the time until it fails.

Here it is not immediately clear what the sample space should be since it depends on
how accurately we can measure time. The most convenient approach is to note that
the lifetime, at least in theory, can assume any nonnegative real number and choose
as the sample space

S =10,00)

where the outcome 0 means that the lightbulb is broken to start with. g

In these three examples, we have sample spaces of three different kinds. The first is
finite, meaning that it has a finite number of outcomes, whereas the second and third
are infinite. Although they are both infinite, they are different in the sense that one
has its points separated, {1, 2, ...} and the other is an entire continuum of points.
We call the first type countable infinity and the second uncountable infinity. We will
return to these concepts later as they turn out to form an important distinction.

In the examples above, the outcomes are always numbers and hence the sample
spaces are subsets of the real line. Here are some examples of other types of sample
spaces.

Example 1.4. Flip a coin twice and observe the sequence of heads and tails.

With H denoting heads and 7' denoting tails, one possible outcome is HT', which
means that we get heads in the first flip and tails in the second. Arguing like this,
there are four possible outcomes and the sample space is

S = {HH, HT, TH, 1T}

Example 1.5. Throw a dart at random on a dartboard of radius r.

If we think of the board as a disk in the plane with center at the origin, an outcome is
an ordered pair of real numbers (x, y), and we can describe the sample space as

S ={(x,y):x*+y* <r?)
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Once we have described an experiment and its sample space, we want to be able to
compute probabilities of the various things that may happen. What is the probability
that we get 6 when we roll a die? That the first 6 does not come before the fifth roll?
That the lightbulb works for at least 1500 h? That our dart hits the bull’s eye? Certainly,
we need to make further assumptions to be able to answer these questions, but before
that, we realize that all these questions have something in common. They all ask for
probabilities of either single outcomes or groups of outcomes. Mathematically, we
can describe these as subsets of the sample space.

| Definition 1.2. A subsetof S, A C S, is called an event.

Note the choice of words here. The terms “outcome” and “event” reflect the fact
that we are describing things that may happen in real life. Mathematically, these are
described as elements and subsets of the sample space. This duality is typical for
probability theory; there is a verbal description and a mathematical description of
the same situation. The verbal description is natural when real-world phenomena
are described and the mathematical formulation is necessary to develop a consistent
theory. See Table 1.1 for a list of set operations and their verbal description.

Example 1.6. If we roll a die and observe the number, two possible events are that
we get an odd outcome and that we get at least 4. If we view these as subsets of the
sample space, we get

A=1{1,3,5} and B={4,5,6)}
If we want to use the verbal description, we might write this as
A = {odd outcome} and B = {atleast 4}

a

We always use “or” in its nonexclusive meaning; thus, “A or B occurs” includes the
possibility that both occur. Note that there are different ways to express combinations
of events; forexample, A \ B = A N B and (A U B)° = A° N BC. The latter is known
as one of De Morgan’s laws, and we state these without proof together with some
other basic set theoretic rules.

TABLE 1.1 Basic Set Operations and Their Verbal Description

Notation Mathematical Description Verbal Description
AUB The union of A and B A or B (or both) occurs
ANB The intersection of A and B Both A and B occur
A€ The complement of A A does not occur

A\ B The difference between A and B A occurs but not B

%] The empty set Impossible event




